Lund Magnus, Stiegler Christian, Abermann Jakob, Citterio Michele, Hansen Birger U, van As Dirk
Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
Asiaq, Greenland Survey, Qatserisut 8, 3900, Nuuk, Greenland.
Ambio. 2017 Feb;46(Suppl 1):81-93. doi: 10.1007/s13280-016-0867-5.
The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.
地表能量平衡(SEB)对于理解北极地区的冰冻圈 - 大气耦合系统至关重要。在本研究中,我们调查了苔原、积雪和冰面上SEB的时空变化。在无雪期,冰面站点的主要能量汇是表面融化。对于苔原,能量用于感热通量、潜热通量和土壤热通量,导致永久冻土融化。更长的无雪期会增加格陵兰冰盖和冰川的融化,并可能促进苔原永久冻土融化。在冬季,云层对所有地表类型都有变暖作用,而在夏季,云层对苔原有冷却作用,对冰面有变暖作用,这反映了反照率的空间变化。影响不同地表类型SEB的因素之间的复杂相互作用仍然是理解当前和未来状况的一个挑战。扩展监测活动并结合建模工作对于评估北极变暖的影响至关重要。