Suppr超能文献

评估法医样本中缺失数据和基因分型错误对基于单核苷酸多态性(SNP)的亲缘关系分析的影响。

Evaluating the Impact of Dropout and Genotyping Error on SNP-Based Kinship Analysis With Forensic Samples.

作者信息

Turner Stephen D, Nagraj V P, Scholz Matthew, Jessa Shakeel, Acevedo Carlos, Ge Jianye, Woerner August E, Budowle Bruce

机构信息

Signature Science, LLC., Austin, TX, United States.

Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, United States.

出版信息

Front Genet. 2022 Jun 30;13:882268. doi: 10.3389/fgene.2022.882268. eCollection 2022.

Abstract

Technological advances in sequencing and single nucleotide polymorphism (SNP) genotyping microarray technology have facilitated advances in forensic analysis beyond short tandem repeat (STR) profiling, enabling the identification of unknown DNA samples and distant relationships. Forensic genetic genealogy (FGG) has facilitated the identification of distant relatives of both unidentified remains and unknown donors of crime scene DNA, invigorating the use of biological samples to resolve open cases. Forensic samples are often degraded or contain only trace amounts of DNA. In this study, the accuracy of genome-wide relatedness methods and identity by descent (IBD) segment approaches was evaluated in the presence of challenges commonly encountered with forensic data: missing data and genotyping error. Pedigree whole-genome simulations were used to estimate the genotypes of thousands of individuals with known relationships using multiple populations with different biogeographic ancestral origins. Simulations were also performed with varying error rates and types. Using these data, the performance of different methods for quantifying relatedness was benchmarked across these scenarios. When the genotyping error was low (<1%), IBD segment methods outperformed genome-wide relatedness methods for close relationships and are more accurate at distant relationship inference. However, with an increasing genotyping error (1-5%), methods that do not rely on IBD segment detection are more robust and outperform IBD segment methods. The reduced call rate had little impact on either class of methods. These results have implications for the use of dense SNP data in forensic genomics for distant kinship analysis and FGG, especially when the sample quality is low.

摘要

测序技术和单核苷酸多态性(SNP)基因分型微阵列技术的进步推动了法医分析超越短串联重复序列(STR)分型的发展,使得能够识别未知DNA样本并推断远亲关系。法医遗传谱系分析(FGG)有助于识别身份不明遗体的远亲以及犯罪现场DNA的未知捐献者,为利用生物样本解决未破案件注入了活力。法医样本常常降解或仅含有微量DNA。在本研究中,在法医数据常见的挑战(缺失数据和基因分型错误)存在的情况下,评估了全基因组亲缘关系方法和同源片段(IBD)方法的准确性。利用具有不同生物地理祖先起源的多个群体,通过系谱全基因组模拟来估计数千个具有已知关系个体的基因型。还进行了不同错误率和错误类型的模拟。利用这些数据,在这些场景下对不同的亲缘关系量化方法的性能进行了基准测试。当基因分型错误率较低(<1%)时,IBD片段方法在近亲关系方面优于全基因组亲缘关系方法,并且在推断远亲关系时更准确。然而,随着基因分型错误率增加(1 - 5%),不依赖IBD片段检测的方法更稳健,优于IBD片段方法。降低的检出率对这两类方法的影响都很小。这些结果对于在法医基因组学中使用密集SNP数据进行远亲关系分析和FGG具有启示意义,尤其是在样本质量较低时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/847c/9282869/d27b273aebf7/fgene-13-882268-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验