Suppr超能文献

NGSremix:一种用于从下一代测序数据估算混合个体之间成对亲缘关系的软件工具。

NGSremix: a software tool for estimating pairwise relatedness between admixed individuals from next-generation sequencing data.

机构信息

Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.

H. Lundbeck A/S, 2500 Valby, Denmark.

出版信息

G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab174.

Abstract

Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here, we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.

摘要

估计个体间的亲缘关系在许多遗传研究领域都很重要。在估计亲缘关系时,如果存在混合,就必须考虑到这一点。然而,能够考虑到混合的方法都基于基因型数据作为输入,这对于从低深度下一代测序(NGS)数据中调用基因型的方法来说是一个问题,因为这些数据的基因型存在很高的不确定性。在这里,我们提出了一个软件工具 NGSremix,用于从低深度 NGS 数据中估计混合个体之间的亲缘关系的最大似然估计,该方法通过基因型似然来考虑基因型的不确定性。使用模拟和真实的 NGS 数据,对平均深度为 4x 或以下的混合个体进行测试,结果表明我们的方法效果很好,明显优于所有常用的最先进的亲缘关系估计方法 PLINK、KING、relateAdmix 和 ngsRelate,这些方法的性能都相当差。因此,NGSremix 是一种从低深度 NGS 数据中估计混合人群亲缘关系的有用新工具。NGSremix 是用 C/C++编写的,具有多线程软件,并在 Github 上免费提供:https://github.com/KHanghoj/NGSremix。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf2/8496226/c13199b65845/jkab174f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验