Suppr超能文献

复合视图:一种基于网络的可视化工具。

CompositeView: A Network-Based Visualization Tool.

作者信息

Allegri Stephen A, McCoy Kevin, Mitchell Cassie S

机构信息

Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.

出版信息

Big Data Cogn Comput. 2022 Jun;6(2). doi: 10.3390/bdcc6020066. Epub 2022 Jun 14.

Abstract

Large networks are quintessential to bioinformatics, knowledge graphs, social network analysis, and graph-based learning. CompositeView is a Python-based open-source application that improves interactive complex network visualization and extraction of actionable insight. CompositeView utilizes specifically formatted input data to calculate composite scores and display them using the Cytoscape component of Dash. Composite scores are defined representations of smaller sets of conceptually similar data that, when combined, generate a single score to reduce information overload. Visualized interactive results are user-refined via filtering elements such as node value and edge weight sliders and graph manipulation options (e.g., node color and layout spread). The primary difference between CompositeView and other network visualization tools is its ability to auto-calculate and auto-update composite scores as the user interactively filters or aggregates data. CompositeView was developed to visualize network relevance rankings, but it performs well with non-network data. Three disparate CompositeView use cases are shown: relevance rankings from SemNet 2.0, an open-source knowledge graph relationship ranking software for biomedical literature-based discovery; Human Development Index (HDI) data; and the Framingham cardiovascular study. CompositeView was stress tested to construct reference benchmarks that define breadth and size of data effectively visualized. Finally, CompositeView is compared to Excel, Tableau, Cytoscape, neo4j, NodeXL, and Gephi.

摘要

大型网络对于生物信息学、知识图谱、社交网络分析和基于图的学习至关重要。CompositeView是一个基于Python的开源应用程序,它改进了交互式复杂网络可视化并提取可操作的见解。CompositeView利用特定格式的输入数据来计算综合得分,并使用Dash的Cytoscape组件显示这些得分。综合得分是概念上相似的较小数据集的定义表示,当组合在一起时会生成一个单一得分以减少信息过载。可视化的交互式结果可通过诸如节点值和边权重滑块以及图形操作选项(例如节点颜色和布局分布)等过滤元素由用户进行优化。CompositeView与其他网络可视化工具的主要区别在于,当用户交互式过滤或聚合数据时,它能够自动计算和自动更新综合得分。CompositeView是为可视化网络相关性排名而开发的,但它在处理非网络数据时也表现良好。展示了三个不同的CompositeView用例:来自SemNet 2.0的相关性排名,SemNet 2.0是一个用于基于生物医学文献发现的开源知识图谱关系排名软件;人类发展指数(HDI)数据;以及弗雷明汉姆心血管研究。对CompositeView进行了压力测试,以构建定义有效可视化数据的广度和大小的参考基准。最后,将CompositeView与Excel、Tableau、Cytoscape、neo4j、NodeXL和Gephi进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b385/9281616/ecc246900858/nihms-1820207-f0001.jpg

相似文献

1
CompositeView: A Network-Based Visualization Tool.
Big Data Cogn Comput. 2022 Jun;6(2). doi: 10.3390/bdcc6020066. Epub 2022 Jun 14.
2
SemNet: Using Local Features to Navigate the Biomedical Concept Graph.
Front Bioeng Biotechnol. 2019 Jul 3;7:156. doi: 10.3389/fbioe.2019.00156. eCollection 2019.
3
Optimizations for Computing Relatedness in Biomedical Heterogeneous Information Networks: SemNet 2.0.
Big Data Cogn Comput. 2022 Mar;6(1). doi: 10.3390/bdcc6010027. Epub 2022 Mar 1.
5
Linking Cytoscape and the corynebacterial reference database CoryneRegNet.
BMC Genomics. 2008 Apr 21;9:184. doi: 10.1186/1471-2164-9-184.
8
Visualization of protein interaction networks: problems and solutions.
BMC Bioinformatics. 2013;14 Suppl 1(Suppl 1):S1. doi: 10.1186/1471-2105-14-S1-S1. Epub 2013 Jan 14.
9
Dynamic graph exploration by interactively linked node-link diagrams and matrix visualizations.
Vis Comput Ind Biomed Art. 2021 Sep 7;4(1):23. doi: 10.1186/s42492-021-00088-8.
10
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
BMC Bioinformatics. 2008 Aug 12;9 Suppl 9(Suppl 9):S5. doi: 10.1186/1471-2105-9-S9-S5.

本文引用的文献

1
Optimizations for Computing Relatedness in Biomedical Heterogeneous Information Networks: SemNet 2.0.
Big Data Cogn Comput. 2022 Mar;6(1). doi: 10.3390/bdcc6010027. Epub 2022 Mar 1.
2
Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19.
Pharmaceutics. 2021 May 26;13(6):794. doi: 10.3390/pharmaceutics13060794.
3
Application of network link prediction in drug discovery.
BMC Bioinformatics. 2021 Apr 12;22(1):187. doi: 10.1186/s12859-021-04082-y.
4
Similarity-based link prediction in social networks using latent relationships between the users.
Sci Rep. 2020 Nov 18;10(1):20137. doi: 10.1038/s41598-020-76799-4.
5
Biological network analysis with deep learning.
Brief Bioinform. 2021 Mar 22;22(2):1515-1530. doi: 10.1093/bib/bbaa257.
6
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
7
A Guide to Conquer the Biological Network Era Using Graph Theory.
Front Bioeng Biotechnol. 2020 Jan 31;8:34. doi: 10.3389/fbioe.2020.00034. eCollection 2020.
8
Predicting links between tumor samples and genes using 2-Layered graph based diffusion approach.
BMC Bioinformatics. 2019 Sep 9;20(1):462. doi: 10.1186/s12859-019-3056-2.
9
SemNet: Using Local Features to Navigate the Biomedical Concept Graph.
Front Bioeng Biotechnol. 2019 Jul 3;7:156. doi: 10.3389/fbioe.2019.00156. eCollection 2019.
10
PARS risk charts: A 10-year study of risk assessment for cardiovascular diseases in Eastern Mediterranean Region.
PLoS One. 2017 Dec 19;12(12):e0189389. doi: 10.1371/journal.pone.0189389. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验