Suppr超能文献

Clair3-trio:使用三对三深度神经网络在家庭三对体中进行高性能纳米孔长读变异调用。

Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks.

机构信息

Department of Computer Science, The University of Hong Kong, Hong Kong, China.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac301.

Abstract

Accurate identification of genetic variants from family child-mother-father trio sequencing data is important in genomics. However, state-of-the-art approaches treat variant calling from trios as three independent tasks, which limits their calling accuracy for Nanopore long-read sequencing data. For better trio variant calling, we introduce Clair3-Trio, the first variant caller tailored for family trio data from Nanopore long-reads. Clair3-Trio employs a Trio-to-Trio deep neural network model, which allows it to input the trio sequencing information and output all of the trio's predicted variants within a single model to improve variant calling. We also present MCVLoss, a novel loss function tailor-made for variant calling in trios, leveraging the explicit encoding of the Mendelian inheritance. Clair3-Trio showed comprehensive improvement in experiments. It predicted far fewer Mendelian inheritance violation variations than current state-of-the-art methods. We also demonstrated that our Trio-to-Trio model is more accurate than competing architectures. Clair3-Trio is accessible as a free, open-source project at https://github.com/HKU-BAL/Clair3-Trio.

摘要

从家系(child-mother-father 三人组)测序数据中准确识别遗传变异对于基因组学很重要。然而,最先进的方法将三人组的变异调用视为三个独立的任务,这限制了它们对 Nanopore 长读测序数据的调用准确性。为了更好地进行三人组变异调用,我们引入了 Clair3-Trio,这是第一个专门针对 Nanopore 长读测序的家系三人组数据的变异调用程序。 Clair3-Trio 采用了 Trio-to-Trio 深度神经网络模型,允许它输入三人组测序信息,并在单个模型中输出三人组的所有预测变异,以提高变异调用的准确性。我们还提出了 MCVLoss,这是一种专门针对三人组变异调用的新型损失函数,利用 Mendelian 遗传的显式编码。Clair3-Trio 在实验中表现出了全面的改进。它预测的孟德尔遗传违反变异比当前最先进的方法要少得多。我们还证明了我们的 Trio-to-Trio 模型比竞争架构更准确。Clair3-Trio 可在 https://github.com/HKU-BAL/Clair3-Trio 上免费获取,是一个开源项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4baf/9487642/283197fe472d/bbac301f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验