Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081, USA.
J Comput Neurosci. 2023 Feb;51(1):43-58. doi: 10.1007/s10827-022-00831-x. Epub 2022 Jul 18.
Reconstructing the recurrent structural connectivity of neuronal networks is a challenge crucial to address in characterizing neuronal computations. While directly measuring the detailed connectivity structure is generally prohibitive for large networks, we develop a novel framework for reverse-engineering large-scale recurrent network connectivity matrices from neuronal dynamics by utilizing the widespread sparsity of neuronal connections. We derive a linear input-output mapping that underlies the irregular dynamics of a model network composed of both excitatory and inhibitory integrate-and-fire neurons with pulse coupling, thereby relating network inputs to evoked neuronal activity. Using this embedded mapping and experimentally feasible measurements of the firing rate as well as voltage dynamics in response to a relatively small ensemble of random input stimuli, we efficiently reconstruct the recurrent network connectivity via compressive sensing techniques. Through analogous analysis, we then recover high dimensional natural stimuli from evoked neuronal network dynamics over a short time horizon. This work provides a generalizable methodology for rapidly recovering sparse neuronal network data and underlines the natural role of sparsity in facilitating the efficient encoding of network data in neuronal dynamics.
重建神经元网络的反复出现的结构连接是刻画神经元计算的关键挑战。虽然直接测量详细的连接结构通常对于大型网络来说是不可行的,但我们开发了一种新的框架,通过利用神经元连接的广泛稀疏性,从神经元动力学中反向工程大规模的反复网络连接矩阵。我们推导出了一个线性输入-输出映射,该映射是由具有脉冲耦合的兴奋性和抑制性积分-点火神经元组成的模型网络不规则动力学的基础,从而将网络输入与诱发的神经元活动联系起来。使用这个嵌入式映射以及对响应相对较小的随机输入刺激的放电率和电压动力学的实验可行测量,我们通过压缩感知技术有效地重建了反复网络的连接。通过类似的分析,我们从短时间内诱发的神经元网络动力学中恢复了高维自然刺激。这项工作为快速恢复稀疏神经元网络数据提供了一种可推广的方法,并强调了稀疏性在促进神经元动力学中网络数据的有效编码方面的自然作用。