Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
J Theor Biol. 2018 Oct 7;454:268-277. doi: 10.1016/j.jtbi.2018.06.011. Epub 2018 Jun 14.
The center-surround receptive field structure, ubiquitous in the visual system, is hypothesized to be evolutionarily advantageous in image processing tasks. We address the potential functional benefits and shortcomings of spatial localization and center-surround antagonism in the context of an integrate-and-fire neuronal network model with image-based forcing. Utilizing the sparsity of natural scenes, we derive a compressive-sensing framework for input image reconstruction utilizing evoked neuronal firing rates. We investigate how the accuracy of input encoding depends on the receptive field architecture, and demonstrate that spatial localization in visual stimulus sampling facilitates marked improvements in natural scene processing beyond uniformly-random excitatory connectivity. However, for specific classes of images, we show that spatial localization inherent in physiological receptive fields combined with information loss through nonlinear neuronal network dynamics may underlie common optical illusions, giving a novel explanation for their manifestation. In the context of signal processing, we expect this work may suggest new sampling protocols useful for extending conventional compressive sensing theory.
中心-环绕感受野结构在视觉系统中普遍存在,被假设在图像处理任务中具有进化优势。我们在基于图像的强制下,利用整合-点火神经元网络模型,探讨了空间定位和中心-环绕拮抗在潜在功能上的优势和不足。利用自然场景的稀疏性,我们推导了一种基于诱发神经元放电率的输入图像重建的压缩感知框架。我们研究了输入编码的准确性如何取决于感受野结构,并证明了在自然场景处理中,视觉刺激采样的空间定位可以显著提高均匀随机兴奋连接之外的性能。然而,对于特定类别的图像,我们表明,生理感受野固有的空间定位与非线性神经元网络动力学导致的信息丢失相结合,可能是常见的视错觉的基础,为它们的表现提供了新的解释。在信号处理方面,我们预计这项工作可能会为扩展传统的压缩感知理论提供新的采样方案。