Department of Human Development and Quantitative Methodology, University of Maryland, College Park.
Psychol Methods. 2019 Dec;24(6):690-707. doi: 10.1037/met0000214. Epub 2019 Apr 18.
Latent growth models, a special class of longitudinal models within the broader structural equation modeling (SEM) domain, provide researchers a framework for investigating questions about change over time; yet rarely is time itself modeled as a focal parameter of interest. In the current article, rather than treating time purely as an index of measurement occasions, the proposed Time to Criterion (T2C) model draws from Preacher and Hancock's (2012) latent growth model reparameterization guidelines to model individual variability (i.e., to treat as a random effect) in one's time to achieve a criterion level of a given outcome. As such, the T2C model also allows researchers to model predictors and distal outcomes of time, as well as benefiting more generally from the flexibility afforded by being embedded within the broader SEM framework to accommodate such real-world data issues as missingness, complex error structures, nonnormality, and nested data. In this study we derive T2C from the linear latent growth model and discuss model assumptions and interpretation. By illustrating the model using real data, we demonstrate both its utility for applied research and its implementation in conventional SEM software. We also discuss and illustrate an extension of the model for nonlinear growth. Overall, the T2C model presents a novel and interpretable growth parameterization for further understanding processes of change. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
潜增长模型是结构方程模型(SEM)领域中更广泛的纵向模型的一个特殊类别,为研究人员提供了一个研究随时间变化的问题的框架;然而,时间本身很少被建模为一个关注的焦点参数。在当前的文章中,提出的时间到标准(T2C)模型不是将时间纯粹视为测量时刻的指标,而是借鉴了 Preacher 和 Hancock(2012)的潜增长模型重新参数化指南,对个体达到给定结果的标准水平的时间的个体变异性(即,将其视为随机效应)进行建模。因此,T2C 模型还允许研究人员对时间的预测因子和远端结果进行建模,并且更普遍地受益于嵌入在更广泛的 SEM 框架中所提供的灵活性,以适应现实世界数据问题,如缺失、复杂的错误结构、非正态性和嵌套数据。在这项研究中,我们从线性潜增长模型中推导出 T2C,并讨论了模型假设和解释。通过使用真实数据来说明模型,我们展示了它在应用研究中的实用性以及在传统 SEM 软件中的实现。我们还讨论并说明了该模型的非线性增长扩展。总体而言,T2C 模型为进一步了解变化过程提供了一种新颖且可解释的增长参数化。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。