Suppr超能文献

使用多任务深度卷积神经网络估计房颤负荷

Atrial Fibrillation Burden Estimation Using Multi-Task Deep Convolutional Neural Network.

作者信息

Prabhakararao Eedara, Dandapat Samarendra

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):5992-6002. doi: 10.1109/JBHI.2022.3191682. Epub 2022 Dec 7.

Abstract

Atrial fibrillation (AF) burden is defined as the percentage of time the patient is in AF rhythm during a certain monitoring period. The accurate AF burden estimation from the long-term electrocardiogram (ECG) recordings provides improved prognostic value compared to the traditional binary AF diagnosis (present or absent) using the snapshot ECG. However, the presence of frequent ectopic beats and different noise levels pose a challenge for precise AF burden estimation. For the first time, we hypothesized that a multi-task deep convolutional neural network (MT-DCNN) could accurately estimate the AF burden from the long-term ambulatory ECG recordings. The model consists of AF detection as a primary task and reconstruction of ECG sequence as an auxiliary task using DCNNs. The auxiliary task regularizes the model to learn robust feature representations for efficient AF detection, thereby aiding accurate AF burden estimation. The MT-DCNN is compared with the state-of-the-art rhythm-based, rhythm- and morphology-based approaches. The models are developed and evaluated on a large database of n=84 patients, totaling t=1,900 h of continuous ECG recordings from the LTAF database. The generalization performance is evaluated on three independent datasets (AFDB, NSRDB and LTNSRDB) of n=48 subjects, totaling t=761 h of continuous ECG recordings. On the LTAF test set, the proposed model exhibits a lesser mean absolute AF burden estimation error of 2.8 % over the rhythm-based and the rhythm- and morphology-based approaches. In addition, the MT-DCNN provides better generalization results on independent test datasets and at different noise levels. The results demonstrate that the MT-DCNN can accurately estimate the AF burden from long-term ECG recordings; thus, it has the potential to be used in remote patient monitoring applications for improved diagnosis, phenotyping, and management of AF.

摘要

房颤(AF)负荷定义为患者在特定监测期内心房颤动心律所占的时间百分比。与使用心电图快照进行的传统二元房颤诊断(存在或不存在)相比,从长期心电图(ECG)记录中准确估计房颤负荷具有更高的预后价值。然而,频繁的异位搏动和不同的噪声水平对精确估计房颤负荷构成了挑战。我们首次假设多任务深度卷积神经网络(MT-DCNN)可以从长期动态心电图记录中准确估计房颤负荷。该模型包括将房颤检测作为主要任务,并使用深度卷积神经网络将心电图序列重建作为辅助任务。辅助任务对模型进行正则化,以学习用于有效房颤检测的鲁棒特征表示,从而有助于准确估计房颤负荷。将MT-DCNN与基于节律、基于节律和形态的最先进方法进行比较。这些模型是在一个包含n = 84名患者的大型数据库上开发和评估的,该数据库来自LTAF数据库,共有t = 1900小时的连续心电图记录。在n = 48名受试者的三个独立数据集(AFDB、NSRDB和LTNSRDB)上评估泛化性能,这些数据集共有t = 761小时的连续心电图记录。在LTAF测试集上,与基于节律和基于节律与形态的方法相比,所提出的模型表现出更小的平均绝对房颤负荷估计误差,为2.8%。此外,MT-DCNN在独立测试数据集和不同噪声水平下提供了更好的泛化结果。结果表明,MT-DCNN可以从长期心电图记录中准确估计房颤负荷;因此,它有潜力用于远程患者监测应用,以改善房颤的诊断、表型分析和管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验