Suppr超能文献

深智:一种基于深度学习和上下文感知启发式的混合模型,用于心房颤动检测。

Deepaware: A hybrid deep learning and context-aware heuristics-based model for atrial fibrillation detection.

机构信息

Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.

SDU Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense 5230, Denmark.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106899. doi: 10.1016/j.cmpb.2022.106899. Epub 2022 May 19.

Abstract

BACKGROUND

State-of-the-art automatic atrial fibrillation (AF) detection models trained on RR-interval (RRI) features generally produce high performance on standard benchmark electrocardiogram (ECG) AF datasets. These models, however, result in a significantly high false positive rates (FPRs) when applied on ECG data collected under free-living ambulatory conditions and in the presence of non-AF arrhythmias.

METHOD

This paper proposes DeepAware, a novel hybrid model combining deep learning (DL) and context-aware heuristics (CAH), which reduces the FPR effectively and improves the AF detection performance on participant-operated ambulatory ECG from free-living conditions. It exploits the RRI and P-wave features, as well as the contextual features from the ambulatory ECG.

RESULTS

DeepAware is shown to be very generalizable and superior to the state-of-the-art models when applied on unseen benchmark ECG AF datasets. Most importantly, the model is able to detect AF efficiently when applied on participant-operated ambulatory ECG recordings from free-living conditions and has achieved a sensitivity (Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%, 98.06%, respectively. Results also demonstrate the effect of atrial activity analysis (via P-waves detection) and CAH in reducing the FPR over the RRI features-based AF detection model.

CONCLUSIONS

The proposed DeepAware model can substantially reduce the physician's workload of manually reviewing the false positives (FPs) and facilitate long-term ambulatory monitoring for early detection of AF.

摘要

背景

基于 RR 间期(RRI)特征训练的最先进的自动心房颤动(AF)检测模型在标准基准心电图(ECG)AF 数据集上通常具有出色的性能。然而,当将这些模型应用于在自由生活条件下采集的 ECG 数据以及存在非 AF 心律失常的情况下时,它们会导致显著的高假阳性率(FPR)。

方法

本文提出了 DeepAware,这是一种结合深度学习(DL)和上下文感知启发式(CAH)的新型混合模型,可有效降低 FPR,并提高在自由生活条件下由参与者操作的活动心电图上的 AF 检测性能。它利用 RRI 和 P 波特征,以及活动心电图的上下文特征。

结果

当应用于未见的基准 ECG AF 数据集时,DeepAware 被证明具有很强的泛化能力并且优于最先进的模型。最重要的是,当应用于自由生活条件下由参与者操作的活动心电图记录时,该模型能够有效地检测 AF,其灵敏度(Se)、特异性(Sp)和准确性(Acc)分别为 97.94%、98.39%和 98.06%。结果还证明了通过 P 波检测进行心房活动分析和 CAH 在降低基于 RRI 特征的 AF 检测模型的 FPR 方面的效果。

结论

所提出的 DeepAware 模型可以大大减少医生手动审查假阳性(FP)的工作量,并有助于长期活动监测以早期检测 AF。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验