Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Comput Biol Med. 2021 Dec;139:104880. doi: 10.1016/j.compbiomed.2021.104880. Epub 2021 Oct 18.
Atrial fibrillation (AF) is the most common persistent cardiac arrhythmia in clinical practice, and its accurate screening is of great significance to avoid cardiovascular diseases (CVDs). Electrocardiogram (ECG) is considered to be the most commonly used technique for detecting AF abnormalities. However, previous ECG-based deep learning algorithms did not take into account the complementary nature of inter-layer information, which may lead to insufficient AF screening. This study reports the first attempt to use hybrid multi-scale information in a global space for accurate and robust AF detection.
We propose a novel deep learning classification method, namely, global hybrid multi-scale convolutional neural network (i.e., GH-MS-CNN), to implement binary classification for AF detection. Unlike previous deep learning methods in AF detection, an ingenious hybrid multi-scale convolution (HMSC) module, for the advantage of automatically aggregating different types of complementary inter-layer multi-scale features in the global space, is introduced into all dense blocks of the GH-MS-CNN model to implement sufficient feature extraction, and achieve much better overall classification performance.
The proposed GH-MS-CNN method has been fully validated on the CPSC 2018 database and tested on the independent PhysioNet 2017 database. The experimental results show that the global and hybrid multi-scale information has tremendous advantages over local and single-type multi-scale information in AF screening. Furthermore, the proposed GH-MS-CNN method outperforms the state-of-the-art methods and achieves the best classification performance with an accuracy of 0.9984, a precision of 0.9989, a sensitivity of 0.9965, a specificity of 0.9998 and an F1 score of 0.9954. In addition, the proposed method has achieved comparable and considerable generalization capability on the PhysioNet 2017 database.
The proposed GH-MS-CNN method has promising capabilities and great advantages in accurate and robust AF detection. It is assumed that this research has made significant improvements in AF screening and has great potential for long-term monitoring of wearable devices.
心房颤动(AF)是临床实践中最常见的持续性心律失常,准确筛查对避免心血管疾病(CVDs)具有重要意义。心电图(ECG)被认为是检测 AF 异常最常用的技术。然而,以前基于 ECG 的深度学习算法没有考虑到层间信息的互补性,这可能导致 AF 筛查不足。本研究首次尝试在全局空间中使用混合多尺度信息进行准确和稳健的 AF 检测。
我们提出了一种新的深度学习分类方法,即全局混合多尺度卷积神经网络(即 GH-MS-CNN),用于实现 AF 检测的二进制分类。与以前的 AF 检测深度学习方法不同,我们引入了一种巧妙的混合多尺度卷积(HMSC)模块,用于在全局空间中自动聚合不同类型的互补层间多尺度特征,该模块被引入 GH-MS-CNN 模型的所有密集块中,以实现充分的特征提取,并实现更好的整体分类性能。
所提出的 GH-MS-CNN 方法已经在 CPSC 2018 数据库上进行了全面验证,并在独立的 PhysioNet 2017 数据库上进行了测试。实验结果表明,在 AF 筛查中,全局和混合多尺度信息比局部和单类型多尺度信息具有巨大优势。此外,所提出的 GH-MS-CNN 方法优于最先进的方法,在精度为 0.9984、精度为 0.9989、灵敏度为 0.9965、特异性为 0.9998 和 F1 分数为 0.9954 的情况下实现了最佳分类性能。此外,该方法在 PhysioNet 2017 数据库上具有相当的可扩展性和相当的泛化能力。
所提出的 GH-MS-CNN 方法在准确和稳健的 AF 检测方面具有良好的性能和优势。预计本研究在 AF 筛查方面取得了重大进展,并且在可穿戴设备的长期监测方面具有巨大的潜力。