Suppr超能文献

一种用于医学图像分割的高效深度均衡模型。

An efficient deep equilibrium model for medical image segmentation.

机构信息

The School of Biomedical Engineering, Health Science Center, Shen zhen University, Shenzhen, 518060, China.

An Individual Researcher, Shenzhen, Guangdong, 518060, China.

出版信息

Comput Biol Med. 2022 Sep;148:105831. doi: 10.1016/j.compbiomed.2022.105831. Epub 2022 Jul 5.

Abstract

In this paper, we propose an effective method that takes the advantages of classical methods and deep learning technology for medical image segmentation through modeling the neural network as a fixed point iteration seeking for system equilibrium by adding a feedback loop. In particular, the nuclear segmentation of medical image is used as an example to demonstrate the proposed method where it can successfully complete the challenge of segmenting nuclei from cells in different histopathological images. Specifically, the nuclei segmentation is formulated as a dynamic process to search for the system equilibrium. Starting from an initial segmentation generated either by a classic algorithm or pre-trained deep learning model, a sequence of segmentation output is created and combined with the original image to dynamically drive the segmentation towards the expected value. This dynamical extension to neural networks requires little extra change on the backbone deep neural network while it significantly increased model accuracy, generalizability, and stability as demonstrated by intensive experimental results from pathological images of different tissue types across different open datasets.

摘要

在本文中,我们提出了一种有效的方法,该方法结合了经典方法和深度学习技术,通过将神经网络建模为通过添加反馈回路寻求系统平衡的固定点迭代,从而实现医学图像分割。特别地,以医学图像的核分割为例,演示了所提出的方法,该方法可以成功地完成从不同组织病理学图像中的细胞中分割核的挑战。具体而言,核分割被公式化为搜索系统平衡的动态过程。从经典算法或预先训练的深度学习模型生成的初始分割开始,创建一系列分割输出,并将其与原始图像结合,以动态地将分割推向预期值。这种对神经网络的动态扩展对骨干深度神经网络的改动很小,但大大提高了模型的准确性、泛化能力和稳定性,这一点在来自不同开放数据集的不同组织类型的病理图像的大量实验结果中得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验