Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.
Université Paris-Cité, IJCLab, 91405, Orsay, France.
Sci Rep. 2022 Jul 18;12(1):12240. doi: 10.1038/s41598-022-14940-1.
The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm[Formula: see text]2 mm and 0.4 mm[Formula: see text]12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11[Formula: see text]11 microdetectors and 3[Formula: see text]3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unitcell of both arrays is a 3D cylindrical diode with a 25 [Formula: see text]m diameter and a 20 [Formula: see text]m depth that results in a welldefined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 20 MeV at clinical-equivalent fluence rates. The microdosimetry quantities were obtained with a spatial resolution of 200 [Formula: see text]m and 600 [Formula: see text]m for the 11[Formula: see text]11 system and for the 3[Formula: see text]3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.
本工作报道了使用迄今为止覆盖面积最大的两个首批多阵列微剂量计进行的微剂量学测量。传感器基于具有新颖 3D 圆柱形结构的新型硅基辐射探测器。每个系统由独立的微探测器阵列组成,覆盖 2mm×2mm 和 0.4mm×12cm 的辐射敏感区域,传感器分布分别以 11×11 个微探测器和 3×3 个多阵列的布局排列。我们在几个能量下进行了质子辐照,以比较两个系统的微剂量学性能,这两个系统具有不同的空间分辨率和检测表面。两个阵列的单元都是一个 25µm 直径和 20µm 深的 3D 圆柱形二极管,这导致在硅片内部刻蚀出一个定义明确且隔离的辐射敏感微体积。在 Orsay 的线性加速器和串列加速器(ALTO)设施中进行了测量,通过用临床等效剂量率的从 6 到 20MeV 的单能质子束辐照两个检测系统。使用 200µm 和 600µm 的空间分辨率获得了微剂量学参数,分别用于 11×11 系统和 3×3 多阵列系统。实验结果与蒙特卡罗模拟进行了比较,发现总体上吻合良好。两个微探测器阵列的良好性能表明,这种架构和两种配置都可以在临床上用作微剂量计,用于测量线性能量分布,从而优化强子治疗的相对生物效应。同样,结果表明,这些设备也可以用作粒子加速器中束流监测的多用途设备。