Suppr超能文献

绝缘体微剂量计中硅敏感体积厚度对强子治疗的影响。

The impact of sensitive volume thickness for silicon on insulator microdosimeters in hadron therapy.

机构信息

Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2020 Jan 24;65(3):035004. doi: 10.1088/1361-6560/ab623f.

Abstract

Compact silicon on insulator (SOI) microdosimeters have been used to characterise the radiation field of many different hadron therapy beams. SOI devices are particularly attractive in hadron therapy fields due to their spatial resolution being well suited to the sharp dose gradients at the end of the primary beam's range. Due to the small size of SOI's sensitive volumes (SVs), which are usually  ∼1-10 [Formula: see text]m thick, the fabrication of these devices can present challenges which are not as common for more conventional thickness silicon devices such as silicon spectroscopy detectors. Microdosimetry is the study of the energy deposition in micrometre sized volumes representing biological sites and is a powerful approach to estimate the biological effect of radiation on the micron-scale level, in a cell. However, cell sizes vary extensively translating in different energy deposition spectra. This work studies SV thicknesses between 1 and 100 [Formula: see text]m using Geant4 and examines the impact of SV dimensions on microdosimetric quantities. The quantities studied were the frequency mean lineal energy, [Formula: see text], and the dose mean lineal energy, [Formula: see text]. Additionally the relative biological effectiveness (RBE), estimated by the microdosimetric kinetic model (MKM), is also investigated. To study the impact of the SV thickness, SOI microdosimeters were irradiated with proton, [Formula: see text] and [Formula: see text] ion beams with ranges of  ∼160 mm, with the microdosimeter being set at various positions along the Bragg curve. It was found that [Formula: see text] was influenced the least in proton beams and increased for heavier ion beams. Conversely, [Formula: see text] was impacted by the SV thickness the most in proton beams and [Formula: see text] was the least. Similar to [Formula: see text], protons were impacted the most by the SV thickness when estimating the RBE using the MKM. The cause of these differences was largely due to the different densities of the delta electron track structure for the case of [Formula: see text] and the energy transferred to the medium from the primary beam for [Formula: see text].

摘要

紧凑型硅-绝缘体 (SOI) 微剂量计已被用于描述许多不同的强子治疗束的辐射场。SOI 器件在强子治疗领域特别有吸引力,因为它们的空间分辨率非常适合主射束射程末端的陡峭剂量梯度。由于 SOI 的敏感体积 (SV) 较小,通常为 1-10μm 厚,因此与更传统的厚硅器件(如硅能谱探测器)相比,制造这些器件可能会面临一些挑战。微剂量学是研究在代表生物部位的微米级体积中能量沉积的科学,是一种强大的方法,可以在细胞水平上估计辐射对微米级水平的生物学效应。然而,细胞大小变化广泛,导致不同的能量沉积谱。本工作研究了 1 到 100μm 的 SV 厚度,使用 Geant4 进行研究,并考察了 SV 尺寸对微剂量学参数的影响。研究的参数是频率平均线性能量 [Formula: see text] 和剂量平均线性能量 [Formula: see text]。此外,还研究了通过微剂量动力学模型 (MKM) 估计的相对生物效应 (RBE)。为了研究 SV 厚度的影响,使用质子、[Formula: see text] 和 [Formula: see text] 离子束对 SOI 微剂量计进行辐照,这些离子束的射程约为 160mm,微剂量计设置在布喇格曲线的不同位置。结果表明,[Formula: see text] 在质子束中受影响最小,而在重离子束中增加。相反,[Formula: see text] 在质子束中受 SV 厚度的影响最大,而 [Formula: see text] 最小。与 [Formula: see text] 类似,当使用 MKM 估计 RBE 时,质子受 SV 厚度的影响最大。这些差异的主要原因是对于[Formula: see text] 的情况,δ 电子轨迹结构的密度不同,以及对于[Formula: see text] 的情况下,从主射束传递到介质的能量不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验