Suppr超能文献

在鲨鱼湾微生物席微生物组中,从宏基因组水平上解析功能复杂性的驱动因素。

Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes.

机构信息

School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.

Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia.

出版信息

ISME J. 2018 Nov;12(11):2619-2639. doi: 10.1038/s41396-018-0208-8. Epub 2018 Jul 6.

Abstract

The functional metagenomic potential of Shark Bay microbial mats was examined for the first time at a millimeter scale, employing shotgun sequencing of communities via the Illumina NextSeq 500 platform in conjunction with defined chemical analyses. A detailed functional metagenomic profile has elucidated key pathways and facilitated inference of critical microbial interactions. In addition, 87 medium-to-high-quality metagenome-assembled genomes (MAG) were assembled, including potentially novel bins under the deep-branching archaeal Asgard group (Thorarchaetoa and Lokiarchaeota). A range of pathways involved in carbon, nitrogen, sulfur, and phosphorus cycles were identified in mat metagenomes, with the Wood-Ljungdahl pathway over-represented and inferred as a major carbon fixation mode. The top five sets of genes were affiliated to sulfate assimilation (cysNC cysNCD, sat), methanogenesis (hdrABC), Wood-Ljungdahl pathways (cooS, coxSML), phosphate transport (pstB), and copper efflux (copA). Polyhydroxyalkanoate (PHA) synthase genes were over-represented at the surface, with PHA serving as a potential storage of fixed carbon. Sulfur metabolism genes were highly represented, in particular complete sets of genes responsible for both assimilatory and dissimilatory sulfate reduction. Pathways of environmental adaptation (UV, hypersalinity, oxidative stress, and heavy metal resistance) were also delineated, as well as putative viral defensive mechanisms (core genes of the CRISPR, BREX, and DISARM systems). This study provides new metagenome-based models of how biogeochemical cycles and adaptive responses may be partitioned in the microbial mats of Shark Bay.

摘要

本研究首次在毫米尺度上对鲨鱼湾微生物垫的功能宏基因组潜力进行了研究,采用 Illumina NextSeq 500 平台对通过 shotgun 测序的群落进行了测序,并结合了明确的化学分析。详细的功能宏基因组图谱阐明了关键途径,并有助于推断关键微生物相互作用。此外,组装了 87 个中高质量宏基因组组装基因组(MAG),包括深分支古菌 Asgard 组(Thorarchaetoa 和 Lokiarchaeota)下的潜在新类群。在垫状宏基因组中鉴定出涉及碳、氮、硫和磷循环的一系列途径,Wood-Ljungdahl 途径过表达,并推断为主要的碳固定模式。排名前五的基因集与硫酸盐同化(cysNC cysNCD、sat)、甲烷生成(hdrABC)、Wood-Ljungdahl 途径(cooS、coxSML)、磷酸盐转运(pstB)和铜外排(copA)有关。多羟基烷酸(PHA)合酶基因在表面过度表达,PHA 可能作为固定碳的潜在储存库。硫代谢基因高度表达,特别是负责同化和异化硫酸盐还原的完整基因集。还描绘了环境适应途径(UV、高盐度、氧化应激和重金属抗性),以及潜在的病毒防御机制(CRISPR、BREX 和 DISARM 系统的核心基因)。本研究提供了新的基于宏基因组的模型,说明了生物地球化学循环和适应反应如何在鲨鱼湾微生物垫中进行划分。

相似文献

引用本文的文献

7
Ribosomal Protein Cluster Organization in Asgard Archaea.阿斯加德古菌中的核糖体蛋白簇组织
Archaea. 2023 Sep 29;2023:5512414. doi: 10.1155/2023/5512414. eCollection 2023.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验