Suppr超能文献

贝叶斯分段指数 II 期设计用于监测时间事件终点。

A Bayesian piecewise exponential phase II design for monitoring a time-to-event endpoint.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

Pharm Stat. 2023 Jan;22(1):34-44. doi: 10.1002/pst.2256. Epub 2022 Jul 18.

Abstract

A robust Bayesian design is presented for a single-arm phase II trial with an early stopping rule to monitor a time to event endpoint. The assumed model is a piecewise exponential distribution with non-informative gamma priors on the hazard parameters in subintervals of a fixed follow up interval. As an additional comparator, we also define and evaluate a version of the design based on an assumed Weibull distribution. Except for the assumed models, the piecewise exponential and Weibull model based designs are identical to an established design that assumes an exponential event time distribution with an inverse gamma prior on the mean event time. The three designs are compared by simulation under several log-logistic and Weibull distributions having different shape parameters, and for different monitoring schedules. The simulations show that, compared to the exponential inverse gamma model based design, the piecewise exponential design has substantially better performance, with much higher probabilities of correctly stopping the trial early, and shorter and less variable trial duration, when the assumed median event time is unacceptably low. Compared to the Weibull model based design, the piecewise exponential design does a much better job of maintaining small incorrect stopping probabilities in cases where the true median survival time is desirably large.

摘要

提出了一种稳健的贝叶斯设计,用于具有提前停止规则的单臂 II 期临床试验,以监测事件时间终点。假设模型是分段指数分布,在固定随访间隔的子区间中,危害参数具有非信息性伽马先验。作为附加比较器,我们还定义和评估了一种基于假设 Weibull 分布的设计版本。除了假设模型外,基于分段指数和 Weibull 模型的设计与假设事件时间分布为指数分布且均值事件时间的逆伽马先验的既定设计相同。通过模拟在具有不同形状参数的几种对数逻辑和 Weibull 分布下,以及不同的监测方案下,对这三种设计进行了比较。模拟结果表明,与基于指数逆伽马模型的设计相比,分段指数设计具有更好的性能,当假设的中位数事件时间不可接受地低时,正确提前停止试验的概率大大提高,试验持续时间更短且更具可变性。与基于 Weibull 模型的设计相比,当真实中位生存时间理想地较大时,分段指数设计在保持较小的不正确停止概率方面做得更好。

相似文献

1
A Bayesian piecewise exponential phase II design for monitoring a time-to-event endpoint.
Pharm Stat. 2023 Jan;22(1):34-44. doi: 10.1002/pst.2256. Epub 2022 Jul 18.
2
Bayesian optimal phase II clinical trial design with time-to-event endpoint.
Pharm Stat. 2020 Nov;19(6):776-786. doi: 10.1002/pst.2030. Epub 2020 Jun 10.
4
Comparing Bayesian early stopping boundaries for phase II clinical trials.
Pharm Stat. 2020 Nov;19(6):928-939. doi: 10.1002/pst.2046. Epub 2020 Jul 27.
5
A randomized Bayesian optimal phase II design with binary endpoint.
J Biopharm Stat. 2023 Mar;33(2):151-166. doi: 10.1080/10543406.2022.2094938. Epub 2022 Jul 6.
6
A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.
Methods Inf Med. 2016;55(1):4-13. doi: 10.3414/ME14-01-0132. Epub 2015 Sep 25.
7
Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data.
Int J Environ Res Public Health. 2021 Aug 20;18(16):8816. doi: 10.3390/ijerph18168816.
8
Monitoring event times in early phase clinical trials: some practical issues.
Clin Trials. 2005;2(6):467-78. doi: 10.1191/1740774505cn121oa.

本文引用的文献

2
Comparing Bayesian early stopping boundaries for phase II clinical trials.
Pharm Stat. 2020 Nov;19(6):928-939. doi: 10.1002/pst.2046. Epub 2020 Jul 27.
3
Bayesian optimal phase II clinical trial design with time-to-event endpoint.
Pharm Stat. 2020 Nov;19(6):776-786. doi: 10.1002/pst.2030. Epub 2020 Jun 10.
4
BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.
Stat Med. 2017 Sep 20;36(21):3302-3314. doi: 10.1002/sim.7338. Epub 2017 Jun 7.
5
Phase II clinical trials with time-to-event endpoints: optimal two-stage designs with one-sample log-rank test.
Stat Med. 2014 May 30;33(12):2004-16. doi: 10.1002/sim.6073. Epub 2013 Dec 13.
6
Randomized phase II designs.
Clin Cancer Res. 2009 Mar 15;15(6):1883-90. doi: 10.1158/1078-0432.CCR-08-2031. Epub 2009 Mar 10.
7
Monitoring event times in early phase clinical trials: some practical issues.
Clin Trials. 2005;2(6):467-78. doi: 10.1191/1740774505cn121oa.
8
Comparing survival of a sample to that of a standard population.
J Natl Cancer Inst. 2003 Oct 1;95(19):1434-9. doi: 10.1093/jnci/djg052.
10
Some extensions and applications of a Bayesian strategy for monitoring multiple outcomes in clinical trials.
Stat Med. 1998 Jul 30;17(14):1563-80. doi: 10.1002/(sici)1097-0258(19980730)17:14<1563::aid-sim873>3.0.co;2-l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验