Zhou Heng, Lee J Jack, Yuan Ying
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, U.S.A.
Stat Med. 2017 Sep 20;36(21):3302-3314. doi: 10.1002/sim.7338. Epub 2017 Jun 7.
We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd.
我们提出了一种灵活的贝叶斯最优II期(BOP2)设计,该设计能够在统一框架下处理简单(如二元)和复杂(如有序、嵌套和共同主要)终点。我们使用狄利克雷多项分布模型来适应不同类型的终点。在每次期中分析时,通过评估一组感兴趣事件的后验概率来做出继续/停止决策,该后验概率经过优化以在原假设下最大化检验效能或最小化患者数量。与其他现有的贝叶斯设计不同,BOP2设计明确控制I型错误率,从而弥合了贝叶斯设计和频率学派设计之间的差距。此外,BOP2设计的停止边界可以在试验开始前进行枚举。这些特性使得BOP2设计可供广泛的用户和监管机构使用,并且在实践中特别易于实施。模拟研究表明,与一些现有的贝叶斯II期设计相比,BOP2设计具有良好的操作特性,检验效能更高,错误终止试验的风险更低。实施BOP2设计的软件可在www.trialdesign.org上免费获取。版权所有© 2017 John Wiley & Sons, Ltd.