Suppr超能文献

活细胞成像和超分辨率显微镜揭示了纤维连接蛋白纤维组装的新机制。

A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy.

机构信息

Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA.

Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

J Cell Sci. 2022 Aug 15;135(16). doi: 10.1242/jcs.260120. Epub 2022 Aug 25.

Abstract

Fibronectin (Fn1) fibrils have long been viewed as continuous fibers composed of extended, periodically aligned Fn1 molecules. However, our live-imaging and single-molecule localization microscopy data are inconsistent with this traditional view and show that Fn1 fibrils are composed of roughly spherical nanodomains containing six to eleven Fn1 dimers. As they move toward the cell center, Fn1 nanodomains become organized into linear arrays, in which nanodomains are spaced with an average periodicity of 105±17 nm. Periodical Fn1 nanodomain arrays can be visualized between cells in culture and within tissues; they are resistant to deoxycholate treatment and retain nanodomain periodicity in the absence of cells. The nanodomain periodicity in fibrils remained constant when probed with antibodies recognizing distinct Fn1 epitopes or combinations of antibodies recognizing epitopes spanning the length of Fn1. Treatment with FUD, a peptide that binds the Fn1 N-terminus and disrupts Fn1 fibrillogenesis, blocked the organization of Fn1 nanodomains into periodical arrays. These studies establish a new paradigm of Fn1 fibrillogenesis. This article has an associated First Person interview with the first author of the paper.

摘要

纤连蛋白 (Fn1) 纤维一直被视为由伸展的、周期性排列的 Fn1 分子组成的连续纤维。然而,我们的活细胞成像和单分子定位显微镜数据与这一传统观点不一致,表明 Fn1 纤维由大约六个到十一个 Fn1 二聚体组成的大致球形纳米域组成。当它们向细胞中心移动时,Fn1 纳米域会组织成线性阵列,其中纳米域之间的平均间距为 105±17nm。在培养的细胞之间和组织内可以观察到周期性的 Fn1 纳米域阵列;它们对脱氧胆酸盐处理具有抗性,并且在没有细胞的情况下保留纳米域周期性。用识别不同 Fn1 表位的抗体或识别跨越 Fn1 长度的表位的抗体组合探测时,纤维中的纳米域周期性保持不变。用 FUD(一种结合 Fn1 N 端并破坏 Fn1 纤维形成的肽)处理会阻止 Fn1 纳米域组织成周期性阵列。这些研究建立了 Fn1 纤维形成的新范例。本文附有该论文第一作者的相关第一人称采访。

相似文献

1
A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy.
J Cell Sci. 2022 Aug 15;135(16). doi: 10.1242/jcs.260120. Epub 2022 Aug 25.
2
Disruption of fibronectin fibrillogenesis affects intraocular pressure (IOP) in BALB/cJ mice.
PLoS One. 2020 Aug 21;15(8):e0237932. doi: 10.1371/journal.pone.0237932. eCollection 2020.
5
Localization of fibronectin matrix assembly sites on fibroblasts and endothelial cells.
J Cell Sci. 1997 Mar;110 ( Pt 5):569-81. doi: 10.1242/jcs.110.5.569.
6
Arrangement of cellular fibronectin in noncollagenous fibrils in human fibroblast cultures.
J Cell Sci. 1991 Nov;100 ( Pt 3):605-12. doi: 10.1242/jcs.100.3.605.
7
Fibronectin fibril formation involves cell interactions with two fibronectin domains.
Exp Cell Res. 1988 Aug;177(2):272-83. doi: 10.1016/0014-4827(88)90461-2.
10
Cryptic domains of tenascin-C differentially control fibronectin fibrillogenesis.
Matrix Biol. 2010 Sep;29(7):573-85. doi: 10.1016/j.matbio.2010.08.003. Epub 2010 Aug 10.

引用本文的文献

2
Fibronectin matrix assembly at a glance.
J Cell Sci. 2025 Mar 15;138(6). doi: 10.1242/jcs.263834. Epub 2025 Mar 25.
4
EDA Fibronectin Microarchitecture and YAP Translocation During Wound Closure.
bioRxiv. 2024 Sep 25:2024.09.23.614581. doi: 10.1101/2024.09.23.614581.
5
A fibronectin gradient remodels mixed-phase mesoderm.
Sci Adv. 2024 Jul 19;10(29):eadl6366. doi: 10.1126/sciadv.adl6366.
6
Live imaging of Fibronectin 1a-mNeonGreen and Fibronectin 1b-mCherry knock-in alleles during early zebrafish development.
Cells Dev. 2024 Mar;177:203900. doi: 10.1016/j.cdev.2024.203900. Epub 2024 Jan 12.
7
8
Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy.
Cell Rep Methods. 2023 Sep 25;3(9):100571. doi: 10.1016/j.crmeth.2023.100571. Epub 2023 Sep 1.
10
Initiation of fibronectin fibrillogenesis is an enzyme-dependent process.
Cell Rep. 2023 May 30;42(5):112473. doi: 10.1016/j.celrep.2023.112473. Epub 2023 May 5.

本文引用的文献

1
Single-molecule localization microscopy.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00038-x. Epub 2021 Jun 3.
3
How good are my data? Reference standards in superresolution microscopy.
Mol Biol Cell. 2020 Sep 1;31(19):2093-2096. doi: 10.1091/mbc.E19-04-0189.
4
SMAP: a modular super-resolution microscopy analysis platform for SMLM data.
Nat Methods. 2020 Sep;17(9):870-872. doi: 10.1038/s41592-020-0938-1.
5
Optimizing imaging speed and excitation intensity for single-molecule localization microscopy.
Nat Methods. 2020 Sep;17(9):909-912. doi: 10.1038/s41592-020-0918-5. Epub 2020 Aug 17.
7
3D mapping of native extracellular matrix reveals cellular responses to the microenvironment.
J Struct Biol X. 2019 Jan-Mar;1:100002. doi: 10.1016/j.yjsbx.2018.100002.
8
Basement Membrane Regulates Fibronectin Organization Using Sliding Focal Adhesions Driven by a Contractile Winch.
Dev Cell. 2020 Mar 9;52(5):631-646.e4. doi: 10.1016/j.devcel.2020.01.007. Epub 2020 Jan 30.
9
Nuclear pores as versatile reference standards for quantitative superresolution microscopy.
Nat Methods. 2019 Oct;16(10):1045-1053. doi: 10.1038/s41592-019-0574-9. Epub 2019 Sep 27.
10
Fibronectin matrix as a scaffold for procollagen proteinase binding and collagen processing.
Mol Biol Cell. 2019 Aug 1;30(17):2218-2226. doi: 10.1091/mbc.E19-03-0140. Epub 2019 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验