University of Oklahomagrid.266900.bgrid.266902.9, Department of Chemistry and Biochemistry, Norman, Oklahoma, USA.
University of Oklahomagrid.266900.bgrid.266902.9 Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, Oklahoma, USA.
J Bacteriol. 2022 Aug 16;204(8):e0013022. doi: 10.1128/jb.00130-22. Epub 2022 Jul 19.
Two-component signal transduction systems (TCSs), consisting of a sensor histidine kinase (HK) and a response regulator (RR), sense environmental stimuli and then modulate cellular responses, typically through changes in gene expression. Our previous work identified the DNA binding motif of CD1586, an RR implicated in Clostridioides difficile strain R20291 sporulation. To determine the role of this RR in the sporulation pathway in C. difficile, we generated a deletion strain of in the historical 630 strain, the homolog of . The C. difficile Δcd1688 strain exhibited a hypersporulation phenotype, suggesting that CD1688 negatively regulates sporulation. Complementation of the C. difficile Δcd1688 strain restored sporulation. In contrast, a nonphosphorylatable copy of did not restore sporulation to wild-type (WT) levels, indicating that CD1688 must be phosphorylated to properly modulate sporulation. Expression of the master regulator , the sporulation-specific sigma factors , , , and , and a signaling protein encoded by was increased in the C. difficile Δcd1688 strain compared to WT. In line with the increased expression, we detected an increase in mature SigE at an earlier time point, which arises from SpoIIR-mediated processing of pro-SigE. Taken together, our data suggest that CD1688 is a novel negative modulator of sporulation in C. difficile and contributes to mediating progression through the spore developmental pathway. These results add to our growing understanding of the complex regulatory events involved in C. difficile sporulation, insight that could be exploited for novel therapeutic development. Clostridioides difficile causes severe gastrointestinal illness and is a leading cause of nosocomial infections in the United States. This pathogen produces metabolically dormant spores that are the major vehicle of transmission between hosts. The sporulation pathway involves an intricate regulatory network that controls a succession of morphological changes necessary to produce spores. The environmental signals inducing the sporulation pathway are not well understood in C. difficile. This work identified a response regulator, CD1688, that, when deleted, led to a hypersporulation phenotype, indicating that it typically acts to repress sporulation. Improving our understanding of the regulatory mechanisms modulating sporulation in C. difficile could provide novel strategies to eliminate or reduce spore production, thus decreasing transmission and disease relapse.
双组分信号转导系统(TCS)由传感器组氨酸激酶(HK)和响应调节器(RR)组成,可感知环境刺激,然后调节细胞反应,通常通过改变基因表达来实现。我们之前的工作确定了 CD1586 的 DNA 结合基序,CD1586 是一种 RR,与艰难梭菌 R20291 孢子形成有关。为了确定该 RR 在艰难梭菌孢子形成途径中的作用,我们在历史上的 630 株中生成了一株 的缺失株,其同源物为 。艰难梭菌 Δcd1688 菌株表现出过度孢子形成表型,表明 CD1688 负调控孢子形成。艰难梭菌 Δcd1688 菌株的互补恢复了孢子形成。相比之下,非磷酸化的 拷贝不能将孢子形成恢复到野生型(WT)水平,表明 CD1688 必须磷酸化才能正确调节孢子形成。与 WT 相比, 、孢子特异性 σ 因子 、 、 和 的表达以及由 编码的信号蛋白在艰难梭菌 Δcd1688 菌株中增加。与增加的 表达一致,我们在更早的时间点检测到成熟 SigE 的增加,这是由 SpoIIR 介导的 pro-SigE 加工产生的。总之,我们的数据表明 CD1688 是艰难梭菌孢子形成的新型负调节剂,并有助于介导孢子发育途径的进展。这些结果增加了我们对艰难梭菌孢子形成中涉及的复杂调控事件的理解,这一认识可能被用于新型治疗方法的开发。艰难梭菌会导致严重的胃肠道疾病,是美国医院获得性感染的主要原因。该病原体产生代谢休眠的孢子,这是宿主之间传播的主要载体。孢子形成途径涉及控制产生孢子所需的一系列形态变化的复杂调控网络。在艰难梭菌中,诱导孢子形成途径的环境信号尚未得到很好的理解。这项工作确定了一种响应调节剂 CD1688,当缺失时,它会导致过度孢子形成表型,表明它通常起抑制孢子形成的作用。提高我们对调节艰难梭菌孢子形成的调控机制的理解可以提供消除或减少孢子产生的新策略,从而减少传播和疾病复发。