Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain.
Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
Gigascience. 2022 Jul 19;11. doi: 10.1093/gigascience/giac065.
Metazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other. There are ongoing efforts to improve standardization for the reporting of inventory data. However, harmonization at the stage of generating metabarcode data has yet to be addressed. A modular framework for harmonized data generation offers a pathway to navigate the complex structure of terrestrial metazoan biodiversity. Here, through our collective expertise as practitioners, method developers, and researchers leading metabarcoding initiatives to inventory terrestrial biodiversity, we seek to initiate a harmonized framework for metabarcode data generation, with a terrestrial arthropod module. We develop an initial set of submodules covering the 5 main steps of metabarcode data generation: (i) sample acquisition; (ii) sample processing; (iii) DNA extraction; (iv) polymerase chain reaction amplification, library preparation, and sequencing; and (v) DNA sequence and metadata deposition, providing a backbone for a terrestrial arthropod module. To achieve this, we (i) identified key points for harmonization, (ii) reviewed the current state of the art, and (iii) distilled existing knowledge within submodules, thus promoting best practice by providing guidelines and recommendations to reduce the universe of methodological options. We advocate the adoption and further development of the terrestrial arthropod module. We further encourage the development of modules for other biodiversity fractions as an essential step toward large-scale biodiversity synthesis through harmonization.
后生动物代谢条形码技术正成为生物多样性编目的重要策略,目前各种项目正在生成大量的群落级数据。整合这些数据集的潜力为更好地了解生物多样性及其对全球变化的可能反应提供了新的机会。然而,如果代谢条形码工作流程彼此不同,大规模综合可能会受到影响。目前正在努力提高库存数据报告的标准化程度。然而,在生成代谢条形码数据的阶段还需要解决协调问题。一个用于协调数据生成的模块化框架为浏览陆地后生动物生物多样性的复杂结构提供了途径。在这里,我们作为从事相关工作的从业者、方法开发人员和领导陆地生物多样性代谢条形码计划的研究人员,通过集体专业知识,寻求发起一个协调的陆地后生动物代谢条形码数据生成框架。我们开发了一个陆地节肢动物模块的初始子模块集,涵盖代谢条形码数据生成的 5 个主要步骤:(i)样本采集;(ii)样本处理;(iii)DNA 提取;(iv)聚合酶链反应扩增、文库制备和测序;(v)DNA 序列和元数据存储,为陆地节肢动物模块提供了一个骨干。为了实现这一目标,我们(i)确定了协调的关键点,(ii)回顾了当前的技术水平,(iii)在子模块中提炼了现有知识,从而通过提供减少方法选择范围的指南和建议来促进最佳实践。我们主张采用和进一步发展陆地节肢动物模块。我们还鼓励开发其他生物多样性成分的模块,作为通过协调实现大规模生物多样性综合的重要步骤。