Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany.
Climate and Environmental Physics, University of Bern, Bern, Switzerland.
Glob Chang Biol. 2022 Oct;28(20):5973-5990. doi: 10.1111/gcb.16345. Epub 2022 Aug 4.
Biogeochemical cycling in permafrost-affected ecosystems remains associated with large uncertainties, which could impact the Earth's greenhouse gas budget and future climate policies. In particular, increased nutrient availability following permafrost thaw could perturb the greenhouse gas exchange in these systems, an effect largely unexplored until now. Here, we enhance the terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), which simulates fully coupled carbon (C), nitrogen (N) and phosphorus (P) cycles in vegetation and soil, with processes relevant in high latitudes (e.g., soil freezing and snow dynamics). In combination with site-level and satellite-based observations, we use the model to investigate impacts of increased nutrient availability from permafrost thawing in comparison to other climate-induced effects and CO fertilization over 1960 to 2018 across the high Arctic. Our simulations show that enhanced availability of nutrients following permafrost thaw account for less than 15% of the total Gross primary productivity increase over the time period, despite simulated N limitation over the high Arctic scale. As an explanation for this weak fertilization effect, observational and model data indicate a mismatch between the timing of peak vegetative growth (week 26-27 of the year, corresponding to the beginning of July) and peak thaw depth (week 32-35, mid-to-late August), resulting in incomplete plant use of nutrients near the permafrost table. The resulting increasing N availability approaching the permafrost table enhances N loss pathways, which leads to rising nitrous oxide (N O) emissions in our model. Site-level emission trends of 2 mg N m year on average over the historical time period could therefore predict an emerging increasing source of N O emissions following future permafrost thaw in the high Arctic.
受永久冻土影响的生态系统中的生物地球化学循环仍然存在很大的不确定性,这可能会影响地球的温室气体预算和未来的气候政策。特别是,永久冻土融化后养分供应的增加可能会扰乱这些系统中的温室气体交换,这种效应直到现在才得到广泛的研究。在这里,我们改进了陆地生态系统模型 QUINCY(量化陆地养分循环与气候系统之间的相互作用),该模型模拟植被和土壤中完全耦合的碳(C)、氮(N)和磷(P)循环,以及与高纬度相关的过程(例如,土壤冻结和雪的动态)。结合站点水平和卫星观测,我们使用该模型来研究与其他气候诱导效应和 CO 施肥相比,永久冻土融化导致的养分增加对北极地区 1960 年至 2018 年的影响。我们的模拟结果表明,尽管在高纬度地区模拟存在氮限制,但在这段时间内,由于永久冻土融化导致的养分供应增加不到总初级生产力增加的 15%。作为这种弱施肥效应的解释,观测和模型数据表明,植被生长高峰期(一年中的第 26-27 周,对应于 7 月初)和最大解冻深度(第 32-35 周,8 月中旬至下旬)之间存在时间不匹配,导致靠近永久冻土带的植物无法完全利用养分。由于靠近永久冻土带的氮供应增加,氮的损失途径增加,导致模型中氧化亚氮(N O)排放量增加。因此,在历史时期,平均每年 2 毫克 N m 的站点排放趋势可以预测,在未来北极永久冻土融化后,N O排放将成为一个新的增加源。