From the Clinic of Anaesthesiology and Critical Care Medicine, Kepler University Hospital GmbH and Johannes Kepler University (TT, CB, JM), Institute of Signal Processing, Johannes Kepler University Linz, Austria (CB), Clinic of Anaesthesiology and Intensive Care Medicine, University Hospital Centre Zagreb - Rebro, Croatia (TTM) and Clinic of Anaesthesiology, University Hospital, Zurich, Switzerland (AH).
Eur J Anaesthesiol. 2022 Sep 1;39(9):766-773. doi: 10.1097/EJA.0000000000001721. Epub 2022 Jul 20.
Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.
Is it possible to predict massive perioperative allogeneic blood transfusion using machine learning?
Retrospective, observational study.
Single adult cardiac surgery centre in Austria between 01 January 2010 and 31 December 2019.
Patients undergoing cardiac surgery.
Primary outcome measures were the number of patients receiving at least 10 units pRBC, the area under the curve for the receiver operating characteristics curve, the F1 score, and the negative-predictive (NPV) and positive-predictive values (PPV) of the five machine learning algorithms used to predict massive perioperative allogeneic blood transfusion.
A total of 3782 (1124 female:) patients were enrolled and 139 received at least 10 pRBC units. Using all features available at hospital admission, massive perioperative allogeneic blood transfusion could be excluded rather accurately. The best area under the curve was achieved by Random Forests: 0.810 (0.76 to 0.86) with high NPV of 0.99). This was still true using only the eight most important features [area under the curve 0.800 (0.75 to 0.85)].
Machine learning models may provide clinical decision support as to which patients to focus on for perioperative preventive treatment in order to preemptively reduce massive perioperative allogeneic blood transfusion by predicting, which patients are not at risk.
Johannes Kepler University Ethics Committee Study Number 1091/2021, Clinicaltrials.gov identifier NCT04856618.
大量围手术期同种异体输血,即围手术期输注超过 10 单位的浓缩红细胞(pRBC),是心脏手术围手术期发病率和死亡率的主要原因之一。预测围手术期输血可能使预防性治疗策略成为可能,从而降低风险并改善患者预后,同时减少资源利用。因此,我们研究了五种不同机器学习算法在我们中心预测心脏手术中大量围手术期同种异体输血的准确性。
是否可以使用机器学习预测大量围手术期同种异体输血?
回顾性、观察性研究。
奥地利一家成人心脏手术中心,时间为 2010 年 1 月 1 日至 2019 年 12 月 31 日。
接受心脏手术的患者。
主要观察指标是接受至少 10 单位浓缩红细胞的患者数量、受试者工作特征曲线的曲线下面积、F1 评分,以及用于预测大量围手术期同种异体输血的五种机器学习算法的阴性预测值(NPV)和阳性预测值(PPV)。
共纳入 3782 例(女性 1124 例:)患者,其中 139 例患者接受了至少 10 单位浓缩红细胞。使用入院时所有可用的特征,可以非常准确地排除大量围手术期同种异体输血。随机森林获得了最佳的曲线下面积:0.810(0.76 至 0.86),具有很高的 NPV(0.99)。仅使用前 8 个最重要的特征时,情况仍然如此[曲线下面积 0.800(0.75 至 0.85)]。
机器学习模型可以为临床决策提供支持,确定哪些患者需要重点关注围手术期预防性治疗,以便通过预测哪些患者没有风险来预先减少大量围手术期同种异体输血。
约翰内斯·开普勒大学伦理委员会研究编号 1091/2021,Clinicaltrials.gov 标识符 NCT04856618。