Sheikhalishahi Seyedmostafa, Goss Sebastian, Seidlmayer Lea K, Zaghdoudi Sarra, Hinske Ludwig C, Kaspar Mathias
Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
Internal Medicine I, Cardiology, University Hospital of Augsburg, Augsburg, Germany.
BMC Med Inform Decis Mak. 2024 Dec 18;24(1):397. doi: 10.1186/s12911-024-02800-z.
Blood transfusion (BT) is a critical aspect of medical care for surgical patients in the Intensive Care Unit (ICU). Timely and accurate identification of BT needs can enhance patient outcomes and healthcare resource management.
This study aims to determine whether a machine learning (ML) model can be trained to predict the need for blood transfusion (BT) in patients on the ICU after a wide range of surgeries, utilizing only data from the ICU.
This retrospective study analyzed data from 9,118 surgical ICU patients from the Amsterdam University Medical Centers database (UMCdb). The study included a primary analysis using data from 6 h before ICU admission up to 1, 2, 3, and 6 h after admission, and a secondary analysis using only the data from 6 h before ICU admission and only the data from the first hour after admission. The model integrated 32 relevant clinical variables and compared the performance of XGBoost and logistic regression (LR) algorithms.
The model demonstrated an effective BT prediction, with XGBoost outperforming LR, particularly for a 12-hour prediction window. Notable differences in patient characteristics were observed among those who received BT and those who did not receive BT. The study establishes the feasibility of using ML for the prediction of BT in surgical ICU patients. It underlines the potential of ML models as decision support tools in healthcare, enabling early identification of BT needs.
输血是重症监护病房(ICU)外科患者医疗护理的关键环节。及时准确地识别输血需求可改善患者预后并优化医疗资源管理。
本研究旨在确定能否仅利用ICU的数据训练机器学习(ML)模型,以预测各类手术后入住ICU的患者的输血需求。
这项回顾性研究分析了来自阿姆斯特丹大学医学中心数据库(UMCdb)的9118例外科ICU患者的数据。该研究包括一项主要分析,使用从入住ICU前6小时至入住后1、2、3和6小时的数据,以及一项次要分析,仅使用入住ICU前6小时的数据和仅使用入住后第一小时的数据。该模型整合了32个相关临床变量,并比较了XGBoost和逻辑回归(LR)算法的性能。
该模型显示出有效的输血预测能力,XGBoost的表现优于LR,尤其是在12小时预测窗口方面。接受输血和未接受输血的患者在特征上存在显著差异。该研究证实了使用机器学习预测外科ICU患者输血需求的可行性。它强调了机器学习模型作为医疗保健决策支持工具的潜力,能够早期识别输血需求。