Jiang Yiqiang, Sung Yunjin, Choi Changhyeok, Joo Bang Gi, Hong Song, Tan Xinyi, Wu Tai-Sing, Soo Yun-Liang, Xiong Pei, Meng-Jung Li Molly, Hao Leiduan, Jung Yousung, Sun Zhenyu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Angew Chem Int Ed Engl. 2022 Sep 12;61(37):e202203836. doi: 10.1002/anie.202203836. Epub 2022 Aug 3.
The design of efficient non-noble metal catalysts for CO hydrogenation to fuels and chemicals is desired yet remains a challenge. Herein, we report that single Mo atoms with a MoN (pyrrolic) moiety enable remarkable CO adsorption and hydrogenation to CO, as predicted by density functional theory studies and evidenced by a high and stable conversion of CO reaching about 30.4 % with a CO selectivity of almost 100 % at 500 °C and very low H partial pressure. Atomically dispersed MoN is calculated to facilitate CO activation and reduces CO to CO* via the direct dissociation path. Furthermore, the highest transition state energy in CO formation is 0.82 eV, which is substantially lower than that of CH formation (2.16 eV) and accounts for the dominant yield of CO. The enhanced catalytic performances of Mo/NC originate from facile CO desorption with the help of dispersed Mo on nitrogen-doped carbon (Mo/NC), and in the absence of Mo nanoparticles. The resulting catalyst preserves good stability without degradation of CO conversion rate even after 68 hours of continuous reaction. This finding provides a promising route for the construction of highly active, selective, and robust single-atom non-precious metal catalysts for reverse water-gas shift reaction.
设计用于将CO加氢转化为燃料和化学品的高效非贵金属催化剂是人们所期望的,但仍然是一项挑战。在此,我们报告,正如密度泛函理论研究所预测的那样,带有MoN(吡咯型)部分的单个Mo原子能够实现显著的CO吸附和加氢生成CO,在500°C和极低的H分压下,CO转化率高达约30.4%,CO选择性几乎为100%,这证明了这一点。经计算,原子分散的MoN有助于CO活化,并通过直接解离路径将CO还原为CO*。此外,CO生成过程中的最高过渡态能量为0.82 eV,远低于CH生成的过渡态能量(2.16 eV),这也是CO占主导产量的原因。Mo/NC的催化性能增强源于在氮掺杂碳上分散的Mo(Mo/NC)的帮助下CO的轻松解吸,且不存在Mo纳米颗粒情况。所得催化剂具有良好的稳定性,即使在连续反应68小时后,CO转化率也不会降低。这一发现为构建用于逆水煤气变换反应的高活性、选择性和稳健的单原子非贵金属催化剂提供了一条有前景的途径。