Suppr超能文献

用于逆水煤气变换反应的单原子掺杂氧化铟催化剂的计算筛选

Computational screening of single-atom doped InO catalysts for the reverse water gas shift reaction.

作者信息

Wang Yuchen, Li Shenggang

机构信息

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.

CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China.

出版信息

Phys Chem Chem Phys. 2023 Dec 21;26(1):381-389. doi: 10.1039/d3cp04352e.

Abstract

The reverse water gas shift (RWGS) reaction is an important method for converting carbon dioxide (CO) into valuable chemicals and fuels by hydrogenation. In this paper, the catalytic activity of single-atom metal-doped (M = Pt, Ir, Pd, Rh, Cu, Ni) indium oxide (c-InO) catalysts in the cubic phase for the RWGS reaction was investigated using density functional theory (DFT) calculations. This was achieved by identifying metal sites, screening oxygen vacancies, followed by further calculating the energy barriers for the direct and indirect dissociation pathways of the RWGS reaction. Our results show that the single-atom dopant in the indium oxide lattice promotes the creation of oxygen vacancies on the InO surface, thereby facilitating the adsorption and activation of CO by the oxide surface and initiating the subsequent RWGS reaction. Furthermore, we find that the oxygen vacancy (O) formation energy on the surface of the single-atom metal doped c-InO(111) surface can be used as a descriptor for CO adsorption, and the higher the O formation energy, the more stable the CO adsorption structure is. The Cu/InO structure has relatively high energy barriers for both direct (1.92 eV) and indirect dissociation (2.09 eV) in the RWGS reaction, indicating its low RWGS reactivity. In contrast, the Ir/InO and Rh/InO structures are more conducive to the direct dissociation of CO into CO, which may serve as more efficient RWGS catalysts. Furthermore, microkinetic simulations show that single atom metal doping to InO enhances CO conversion, especially under high reaction temperatures, where the formation of oxygen vacancies is the limiting factor for CO reactivity on the M/InO (M = Cu, Ir, Rh) models. Among these three single-atom catalysts, the Ir/InO model was predicted to have the best CO reactivity at reaction temperatures above 573 K.

摘要

逆水煤气变换(RWGS)反应是通过氢化将二氧化碳(CO₂)转化为有价值的化学品和燃料的重要方法。本文采用密度泛函理论(DFT)计算研究了立方相单原子金属掺杂(M = Pt、Ir、Pd、Rh、Cu、Ni)氧化铟(c-InO)催化剂对RWGS反应的催化活性。这是通过确定金属位点、筛选氧空位,然后进一步计算RWGS反应直接和间接解离途径的能垒来实现的。我们的结果表明,氧化铟晶格中的单原子掺杂剂促进了InO表面氧空位的产生,从而促进了氧化物表面对CO₂的吸附和活化,并引发了随后的RWGS反应。此外,我们发现单原子金属掺杂的c-InO(111)表面上的氧空位(O)形成能可作为CO₂吸附的描述符,O形成能越高,CO₂吸附结构越稳定。Cu/InO结构在RWGS反应中的直接解离(1.92 eV)和间接解离(2.09 eV)都具有相对较高的能垒,表明其RWGS反应活性较低。相比之下,Ir/InO和Rh/InO结构更有利于CO₂直接解离为CO,可能是更高效的RWGS催化剂。此外,微观动力学模拟表明,单原子金属掺杂到InO中可提高CO₂转化率,特别是在高反应温度下,此时氧空位的形成是M/InO(M = Cu、Ir、Rh)模型上CO₂反应活性的限制因素。在这三种单原子催化剂中,预测Ir/InO模型在反应温度高于573 K时具有最佳的CO₂反应活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验