State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.
School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou310024, China.
Acc Chem Res. 2022 Aug 2;55(15):2148-2161. doi: 10.1021/acs.accounts.2c00311. Epub 2022 Jul 19.
The discovery and development of organometallic catalysts is of paramount importance in modern organic synthesis, among which the ligand scaffolds play a crucial role in controlling the activity and selectivity. Over the past several decades, d transition-metal complexes of pincer ligands have been developed extensively thanks to their easy structural modification, versatile reactivities, and high stability. One paradigm is the bis(phosphine)-based pincer iridium complexes PCP-Ir, which are highly active for alkane dehydrogenation, partly due to their high thermostability. However, except for alkane dehydrogenation and related transformations, few applications of pincer iridium catalysis have been seen in organic synthesis. This mainly arises from the low functional-group compatibility and poor substrate scope and the limited catalytic chemistry that invariably involves Ir(I/III) redox processes initiated by oxidative addition of substrates to 14-electron (PCP)Ir fragments (the proposed catalytically active intermediates). In this Account, we describe our endeavor on the development of a new family of PCN-Ir complexes with initial intention on creating more efficient alkane dehydrogenation catalysts. The replacement of a soft, σ-donor phosphine arm in the PCP ligands by a harder, π-acceptor N-heteroarene (pyridine or oxazoline) not only provides an additional platform to modify the structural properties but also offers new modes of bond activation and novel reactivities and catalysis. One uniqueness of the PCN-Ir system lies in the formation, via -C(sp)-H cyclometalation of the pyridine unit in the PCN ligand, of the neutral monohydride (PCC)IrHL (L = neutral ligand), which catalyzes positional and stereoselective 1-alkene-to-()-2-alkene isomerization. Moreover, the PCN-Ir catalysts effect ethanol dehydrogenation without decarbonylation, allowing for transfer hydrogenation of unactivated alkenes and -selective semihydrogenation of internal alkynes with user-friendly ethanol as the H-donor. Another feature originates from the ability of the pentacoordinate hydrido chloride complex (PCN)IrHCl to undergo reversible solvent-coordination-induced-ionization (SCII), furnishing a cationic monohydride [(PCN)IrH(Sol)]Cl bearing an uncoordinated Cl anion that effects selective hydrometalation of internal alkynes over the corresponding ()-alkenes; the resulting (PCN)Ir(vinyl)Cl complex undergoes amine-assisted formal alcoholysis involving the protonation of the Cl anion by the activated Ir-bound EtOH, again via the SCII pathway. Together these elementary reactions lay the foundation for -selective semihydrogenation of alkynes with EtOH. Further, the design of the oxazoline-containing chiral complexes (PCN)IrHCl enables asymmetric transfer hydrogenation of alkenes/ketones with ethanol. The efficient catalytic α-alkylation of unactivated esters/amides with alcohols is another case showing the benefit that the PCN-Ir catalyst can offer. These examples illustrate the profound impact of the pincer ligands on the reactivities and catalysis. We hope this Account will provide an in-depth view into the fundamentals of pincer iridium chemistry and ultimately broaden its applications in organic synthesis.
金属有机催化剂的发现和发展在现代有机合成中至关重要,其中配体支架在控制活性和选择性方面起着关键作用。在过去的几十年中,由于其易于结构修饰、多功能反应性和高稳定性,d 过渡金属配合物的钳形配体得到了广泛的发展。其中一个范例是双(膦)基钳形铱配合物 PCP-Ir,它对烷烃脱氢具有很高的活性,部分原因是其高热稳定性。然而,除了烷烃脱氢及其相关转化外,在有机合成中很少看到钳形铱催化的应用。这主要是由于低官能团兼容性和较差的底物范围以及有限的催化化学,这些都不可避免地涉及到底物与 14 电子(PCP)Ir 片段(被提议的催化活性中间体)的氧化加成引发的 Ir(I/III) 氧化还原过程。在本综述中,我们描述了我们在开发具有初始意图的新型 PCN-Ir 配合物家族方面的努力,目的是创建更有效的烷烃脱氢催化剂。在 PCP 配体中用较硬的π-受体 N-杂环芳烃(吡啶或恶唑啉)取代柔软的σ-供体膦臂,不仅提供了修饰结构性质的附加平台,而且还提供了新的键活化方式和新颖的反应性和催化作用。PCN-Ir 体系的独特之处之一在于通过 PCN 配体中吡啶单元的 -C(sp)-H 环金属化,形成中性单氢化物 (PCC)IrHL(L =中性配体),该单氢化物可催化位置和立体选择性 1-烯烃到()-2-烯烃异构化。此外,PCN-Ir 催化剂可实现乙醇脱氢而不脱羰,允许未活化烯烃的转移氢化和内部炔烃的 -选择性半氢化,使用户友好的乙醇作为 H 供体。另一个特点源自五配位氢化物氯化物配合物(PCN)IrHCl 进行可逆溶剂配位诱导离域(SCII)的能力,提供带有未配位 Cl 阴离子的阳离子单氢化物 [(PCN)IrH(Sol)]Cl,该阴离子可对相应的()-烯烃进行选择性氢金属化;所得(PCN)Ir(乙烯基)Cl 配合物通过胺辅助的形式醇解反应进行,其中由活化的 Ir 结合的 EtOH 质子化 Cl 阴离子,再次通过 SCII 途径。这些基本反应共同为内部炔烃的 -选择性半氢化提供了基础。此外,设计含恶唑啉的手性配合物(PCN)IrHCl 可实现烯烃/酮与乙醇的不对称转移氢化。未活化酯/酰胺与醇的高效催化α-烷基化是另一个说明 PCN-Ir 催化剂优势的例子。这些例子说明了钳形配体对反应性和催化作用的深远影响。我们希望本综述将提供对钳形铱化学基础的深入了解,并最终拓宽其在有机合成中的应用。