Ferrari Manuela, Iyer Srividya, LeBlanc Annie, Roy Marc-André, Abdel-Baki Amal
Douglas Research Centre, Montreal, QC, Canada.
Department of Psychiatry, McGill University, Montreal, QC, Canada.
JMIR Res Protoc. 2022 Jul 19;11(7):e37346. doi: 10.2196/37346.
Given the strong evidence of their effectiveness, early intervention services (EIS) for psychosis are being widely implemented. However, heterogeneity in the implementation of essential components remains an ongoing challenge. Rapid-learning health systems (RLHSs) that embed data collection in clinical settings for real-time learning and continuous quality improvement can address this challenge. Therefore, we implemented an RLHS in 11 EIS in Quebec, Canada.
This project aims to determine the feasibility and acceptability of implementing an RLHS in EIS and assess its impact on compliance with standards for essential EIS components.
Funding for this project was secured in July 2019, and ethics approval was received in December 2019. The implementation of this RLHS involves 6 iterative phases: external and internal scan, design, implementation, evaluation, adjustment, and dissemination. Multiple stakeholder groups (service users, families, clinicians, researchers, decision makers, and provincial EIS associations) are involved in all phases. Meaningful EIS quality indicators (eg, satisfaction and timeliness of response to referrals) were selected based on a literature review, provincial guidelines, and stakeholder consensus on prioritization of indicators. A digital infrastructure was designed and deployed comprising a user-friendly interface for routinely collecting data from programs; a digital terminal and mobile app to collect feedback from service users and families regarding care received, health, and quality of life; and data analytic, visualization, and reporting functionalities to provide participating programs with real-time feedback on their ongoing performance in relation to standards and to other programs, including tailored recommendations. Our community of practice conducts activities, leveraging insights from data to build program capacity while continuously aligning their practices with standards and best practices. Guided by the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework, we are collecting quantitative and qualitative data on the reach, effectiveness, adoption, implementation, and maintenance of our RLHS for evaluating its impacts.
Phase 1 (identifying RLHS indicators for EIS based on a literature synthesis, a survey, and consensus meetings with all stakeholder groups) and phase 2 (developing and implementing the RLHS digital infrastructure) are completed (September 2019 to May 2020). Phases 3 to 5 have been ongoing (June 2020 to June 2022). Continuous data collection through the RLHS data capture platforms and real-time feedback to all stakeholders are deployed. Phase 6 will be implemented in 2022 to assess the impact of the RLHS using the Reach, Effectiveness, Adoption, Implementation, and Maintenance framework with quantitative and qualitative data.
This project will yield valuable insights into the implementation of RLHS in EIS, offering preliminary evidence of its acceptability, feasibility, and impacts on program-level outcomes. The findings will refine our RLHS further and advance approaches that use data, stakeholder voices, and collaborative learning to improve outcomes and quality in services for psychosis.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/37346.
鉴于早期干预服务(EIS)对治疗精神病效果显著,相关服务正在广泛推行。然而,在实施关键组成部分时存在异质性,这仍是一个持续的挑战。将数据收集嵌入临床环境以进行实时学习和持续质量改进的快速学习卫生系统(RLHS)可以应对这一挑战。因此,我们在加拿大魁北克省的11个早期干预服务机构中实施了快速学习卫生系统。
本项目旨在确定在早期干预服务中实施快速学习卫生系统的可行性和可接受性,并评估其对符合早期干预服务关键组成部分标准的影响。
该项目于2019年7月获得资金,并于2019年12月获得伦理批准。快速学习卫生系统的实施包括6个迭代阶段:外部和内部扫描、设计、实施、评估、调整和推广。多个利益相关者群体(服务使用者、家庭、临床医生、研究人员、决策者和省级早期干预服务协会)参与所有阶段。基于文献综述、省级指南以及利益相关者对指标优先级的共识,选择了有意义的早期干预服务质量指标(如对转诊的满意度和响应及时性)。设计并部署了一个数字基础设施,包括一个用于从项目中常规收集数据的用户友好界面;一个数字终端和移动应用程序,用于收集服务使用者和家庭对所接受护理、健康和生活质量的反馈;以及数据分析、可视化和报告功能,为参与项目提供有关其与标准及其他项目相比的持续绩效的实时反馈,包括量身定制的建议。我们的实践社区开展活动,利用数据中的见解来建设项目能力,同时不断使其实践与标准和最佳实践保持一致。在RE-AIM(覆盖范围、有效性、采用率、实施情况、维持情况)框架的指导下,我们正在收集有关快速学习卫生系统的覆盖范围、有效性、采用率、实施情况和维持情况的定量和定性数据,以评估其影响。
第1阶段(基于文献综述、一项调查以及与所有利益相关者群体的共识会议确定早期干预服务的快速学习卫生系统指标)和第2阶段(开发并实施快速学习卫生系统数字基础设施)已完成(2019年9月至2020年5月)。第3至5阶段正在进行(2020年6月至2022年6月)。通过快速学习卫生系统数据捕获平台持续收集数据,并向所有利益相关者提供实时反馈。第6阶段将于2022年实施,使用覆盖范围、有效性、采用率、实施情况和维持情况框架,通过定量和定性数据评估快速学习卫生系统的影响。
该项目将为在早期干预服务中实施快速学习卫生系统提供有价值的见解,提供其可接受性、可行性以及对项目层面结果影响的初步证据。研究结果将进一步完善我们的快速学习卫生系统,并推进利用数据、利益相关者意见和协作学习来改善精神病服务结果和质量的方法。
国际注册报告识别号(IRRID):DERR1-10.2196/37346。