Suppr超能文献

基于 HAGCN 和多模态融合的脑卒中后康复手部运动功能定量评估

Quantitative Assessment of Hand Motor Function for Post-Stroke Rehabilitation Based on HAGCN and Multimodality Fusion.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2032-2041. doi: 10.1109/TNSRE.2022.3192479. Epub 2022 Jul 26.

Abstract

Quantitative assessment of hand function can assist therapists in providing appropriate rehabilitation strategies, which plays an essential role in post-stroke rehabilitation. Conventionally, the assessment process relies heavily on clinical experience and lacks quantitative analysis. To quantitatively assess the hand motor function of patients with post-stroke hemiplegia, this study proposes a novel multi-modality fusion assessment framework. This framework includes three components: the kinematic feature extraction based on a graph convolutional network (HAGCN), the surface electromyography (sEMG) signal processing based on a multi-layer long short term memory (LSTM) network, and the quantitative assessment based on the multi-modality fusion. To the best of the authors' knowledge, this is the first study of applying a graph convolution network to assess the hand motor function. We also collect the kinematic data and sEMG data from 70 subjects who completed 28 types of hand movements. Therapists first graded patients using traditional motor assessment scales (Brunnstrom Scale and Fugl-Meyer Assessment Scale) and further refined the patient's motor assessment result by their experience. Then, we trained the HAGCN and LSTM networks and quantitatively assessed each patient based on the proposed assessment framework. Finally, the Spearman correlation coefficient (SC) between the assessment result of this study and the traditional scale are 0.908 and 0.967, demonstrating a significant correlation between the proposed assessment and the traditional scale scores. In addition, the SC value between the score of this study and the refined hand motor function is 0.997, indicating the "ceiling effect" of some traditional scales can be avoided.

摘要

手部功能的定量评估可以帮助治疗师提供适当的康复策略,这在中风后康复中起着至关重要的作用。传统上,评估过程主要依赖于临床经验,缺乏定量分析。为了定量评估中风后偏瘫患者的手部运动功能,本研究提出了一种新的多模态融合评估框架。该框架包括三个部分:基于图卷积网络(HAGCN)的运动学特征提取、基于多层长短时记忆网络(LSTM)的表面肌电(sEMG)信号处理,以及基于多模态融合的定量评估。据作者所知,这是首次应用图卷积网络来评估手部运动功能的研究。我们还从 70 名完成 28 种手部运动的受试者中收集了运动学数据和 sEMG 数据。治疗师首先使用传统的运动评估量表(Brunnstrom 量表和 Fugl-Meyer 评估量表)对患者进行评分,并根据经验进一步细化患者的运动评估结果。然后,我们训练了 HAGCN 和 LSTM 网络,并基于提出的评估框架对每个患者进行了定量评估。最后,本研究评估结果与传统量表之间的 Spearman 相关系数(SC)为 0.908 和 0.967,表明提出的评估与传统量表评分之间存在显著相关性。此外,本研究评分与细化后的手部运动功能之间的 SC 值为 0.997,表明一些传统量表的“天花板效应”可以避免。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验