Zhao Xusheng, Wu Jia, Peng Hao, Beheshti Amin, Monaghan Jessica J M, McAlpine David, Hernandez-Perez Heivet, Dras Mark, Dai Qiong, Li Yangyang, Yu Philip S, He Lifang
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
School of Computing, Macquarie University, Sydney, Australia.
Neural Netw. 2022 Oct;154:56-67. doi: 10.1016/j.neunet.2022.06.035. Epub 2022 Jul 3.
Modern neuroimaging techniques enable us to construct human brains as brain networks or connectomes. Capturing brain networks' structural information and hierarchical patterns is essential for understanding brain functions and disease states. Recently, the promising network representation learning capability of graph neural networks (GNNs) has prompted related methods for brain network analysis to be proposed. Specifically, these methods apply feature aggregation and global pooling to convert brain network instances into vector representations encoding brain structure induction for downstream brain network analysis tasks. However, existing GNN-based methods often neglect that brain networks of different subjects may require various aggregation iterations and use GNN with a fixed number of layers to learn all brain networks. Therefore, how to fully release the potential of GNNs to promote brain network analysis is still non-trivial. In our work, a novel brain network representation framework, BN-GNN, is proposed to solve this difficulty, which searches for the optimal GNN architecture for each brain network. Concretely, BN-GNN employs deep reinforcement learning (DRL) to automatically predict the optimal number of feature propagations (reflected in the number of GNN layers) required for a given brain network. Furthermore, BN-GNN improves the upper bound of traditional GNNs' performance in eight brain network disease analysis tasks.
现代神经成像技术使我们能够将人类大脑构建为脑网络或连接组。获取脑网络的结构信息和层次模式对于理解脑功能和疾病状态至关重要。最近,图神经网络(GNN)颇具前景的网络表示学习能力促使人们提出了相关的脑网络分析方法。具体而言,这些方法应用特征聚合和全局池化将脑网络实例转换为编码脑结构归纳的向量表示,用于下游脑网络分析任务。然而,现有的基于GNN的方法往往忽略了不同受试者的脑网络可能需要不同的聚合迭代次数,并且使用固定层数的GNN来学习所有脑网络。因此,如何充分释放GNN的潜力以促进脑网络分析仍然并非易事。在我们的工作中,提出了一种新颖的脑网络表示框架BN-GNN来解决这一难题,该框架为每个脑网络搜索最优的GNN架构。具体来说,BN-GNN采用深度强化学习(DRL)自动预测给定脑网络所需的最优特征传播次数(反映在GNN层数上)。此外,BN-GNN在八项脑网络疾病分析任务中提高了传统GNN性能的上限。