Chen Yangrui, You Jiaxuan, He Jun, Lin Yuan, Peng Yanghua, Wu Chuan, Zhu Yibo
Department of Computer Science, University of Hong Kong, 999077, Hong Kong, China.
Department of Computer Science, Stanford University, Stanford, 94305, USA.
Neural Netw. 2023 Apr;161:505-514. doi: 10.1016/j.neunet.2023.01.051. Epub 2023 Feb 4.
Graph neural network (GNN) is a powerful model for learning from graph data. However, existing GNNs may have limited expressive power, especially in terms of capturing adequate structural and positional information of input graphs. Structure properties and node position information are unique to graph-structured data, but few GNNs are capable of capturing them. This paper proposes Structure- and Position-aware Graph Neural Networks (SP-GNN), a new class of GNNs offering generic and expressive power of graph data. SP-GNN enhances the expressive power of GNN architectures by incorporating a near-isometric proximity-aware position encoder and a scalable structure encoder. Further, given a GNN learning task, SP-GNN can be used to analyze positional and structural awareness of GNN tasks using the corresponding embeddings computed by the encoders. The awareness scores can guide fusion strategies of the extracted positional and structural information with raw features for better performance of GNNs on downstream tasks. We conduct extensive experiments using SP-GNN on various graph datasets and observe significant improvement in classification over existing GNN models.
图神经网络(GNN)是一种用于从图数据中学习的强大模型。然而,现有的GNN可能具有有限的表达能力,特别是在捕获输入图的足够结构和位置信息方面。结构属性和节点位置信息是图结构数据所特有的,但很少有GNN能够捕获它们。本文提出了结构和位置感知图神经网络(SP-GNN),这是一类新型的GNN,具有图数据的通用和表达能力。SP-GNN通过结合近等距邻近感知位置编码器和可扩展结构编码器来增强GNN架构的表达能力。此外,给定一个GNN学习任务,SP-GNN可以使用编码器计算的相应嵌入来分析GNN任务的位置和结构感知。这些感知分数可以指导将提取的位置和结构信息与原始特征进行融合的策略,以提高GNN在下游任务上的性能。我们使用SP-GNN在各种图数据集上进行了广泛的实验,并观察到与现有GNN模型相比,分类有显著改进。