College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China.
Shanghai Yangpu Mental Health Center, Shanghai, China.
Biomed Eng Online. 2024 Jun 17;23(1):55. doi: 10.1186/s12938-024-01250-y.
Schizophrenia (SZ), a psychiatric disorder for which there is no precise diagnosis, has had a serious impact on the quality of human life and social activities for many years. Therefore, an advanced approach for accurate treatment is required.
In this study, we provide a classification approach for SZ patients based on a spatial-temporal residual graph convolutional neural network (STRGCN). The model primarily collects spatial frequency features and temporal frequency features by spatial graph convolution and single-channel temporal convolution, respectively, and blends them both for the classification learning, in contrast to traditional approaches that only evaluate temporal frequency information in EEG and disregard spatial frequency features across brain regions.
We conducted extensive experiments on the publicly available dataset Zenodo and our own collected dataset. The classification accuracy of the two datasets on our proposed method reached 96.32% and 85.44%, respectively. In the experiment, the dataset using delta has the best classification performance in the sub-bands.
Other methods mainly rely on deep learning models dominated by convolutional neural networks and long and short time memory networks, lacking exploration of the functional connections between channels. In contrast, the present method can treat the EEG signal as a graph and integrate and analyze the temporal frequency and spatial frequency features in the EEG signal.
We provide an approach to not only performs better than other classic machine learning and deep learning algorithms on the dataset we used in diagnosing schizophrenia, but also understand the effects of schizophrenia on brain network features.
精神分裂症(SZ)是一种没有明确诊断的精神疾病,多年来严重影响了人类的生活质量和社会活动。因此,需要一种先进的方法来进行准确的治疗。
在这项研究中,我们提出了一种基于时空残差图卷积神经网络(STRGCN)的 SZ 患者分类方法。该模型主要通过空间图卷积和单通道时间卷积分别采集空间频率特征和时间频率特征,并将两者融合进行分类学习,与传统方法仅评估 EEG 中的时间频率信息而忽略脑区之间的空间频率特征不同。
我们在公开数据集 Zenodo 和我们自己收集的数据集上进行了广泛的实验。我们提出的方法在这两个数据集上的分类准确率分别达到了 96.32%和 85.44%。在实验中,使用 delta 的数据集在子带中具有最佳的分类性能。
其他方法主要依赖于以卷积神经网络和长短时记忆网络为主导的深度学习模型,缺乏对通道之间功能连接的探索。相比之下,本方法可以将 EEG 信号视为一个图,并整合和分析 EEG 信号中的时间频率和空间频率特征。
我们提供的方法不仅在我们用于诊断精神分裂症的数据集上的表现优于其他经典机器学习和深度学习算法,而且还可以了解精神分裂症对大脑网络特征的影响。