Suppr超能文献

基于时空残差图卷积网络的精神分裂症自动诊断。

Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network.

机构信息

College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China.

Shanghai Yangpu Mental Health Center, Shanghai, China.

出版信息

Biomed Eng Online. 2024 Jun 17;23(1):55. doi: 10.1186/s12938-024-01250-y.

Abstract

BACKGROUND

Schizophrenia (SZ), a psychiatric disorder for which there is no precise diagnosis, has had a serious impact on the quality of human life and social activities for many years. Therefore, an advanced approach for accurate treatment is required.

NEW METHOD

In this study, we provide a classification approach for SZ patients based on a spatial-temporal residual graph convolutional neural network (STRGCN). The model primarily collects spatial frequency features and temporal frequency features by spatial graph convolution and single-channel temporal convolution, respectively, and blends them both for the classification learning, in contrast to traditional approaches that only evaluate temporal frequency information in EEG and disregard spatial frequency features across brain regions.

RESULTS

We conducted extensive experiments on the publicly available dataset Zenodo and our own collected dataset. The classification accuracy of the two datasets on our proposed method reached 96.32% and 85.44%, respectively. In the experiment, the dataset using delta has the best classification performance in the sub-bands.

COMPARISON WITH EXISTING METHODS

Other methods mainly rely on deep learning models dominated by convolutional neural networks and long and short time memory networks, lacking exploration of the functional connections between channels. In contrast, the present method can treat the EEG signal as a graph and integrate and analyze the temporal frequency and spatial frequency features in the EEG signal.

CONCLUSION

We provide an approach to not only performs better than other classic machine learning and deep learning algorithms on the dataset we used in diagnosing schizophrenia, but also understand the effects of schizophrenia on brain network features.

摘要

背景

精神分裂症(SZ)是一种没有明确诊断的精神疾病,多年来严重影响了人类的生活质量和社会活动。因此,需要一种先进的方法来进行准确的治疗。

新方法

在这项研究中,我们提出了一种基于时空残差图卷积神经网络(STRGCN)的 SZ 患者分类方法。该模型主要通过空间图卷积和单通道时间卷积分别采集空间频率特征和时间频率特征,并将两者融合进行分类学习,与传统方法仅评估 EEG 中的时间频率信息而忽略脑区之间的空间频率特征不同。

结果

我们在公开数据集 Zenodo 和我们自己收集的数据集上进行了广泛的实验。我们提出的方法在这两个数据集上的分类准确率分别达到了 96.32%和 85.44%。在实验中,使用 delta 的数据集在子带中具有最佳的分类性能。

与现有方法的比较

其他方法主要依赖于以卷积神经网络和长短时记忆网络为主导的深度学习模型,缺乏对通道之间功能连接的探索。相比之下,本方法可以将 EEG 信号视为一个图,并整合和分析 EEG 信号中的时间频率和空间频率特征。

结论

我们提供的方法不仅在我们用于诊断精神分裂症的数据集上的表现优于其他经典机器学习和深度学习算法,而且还可以了解精神分裂症对大脑网络特征的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea8/11181588/00033cbad745/12938_2024_1250_Fig1_HTML.jpg

相似文献

1
Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network.
Biomed Eng Online. 2024 Jun 17;23(1):55. doi: 10.1186/s12938-024-01250-y.
2
A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
IEEE J Biomed Health Inform. 2020 May;24(5):1333-1343. doi: 10.1109/JBHI.2019.2941222. Epub 2019 Sep 13.
3
Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach.
Clin EEG Neurosci. 2021 Jan;52(1):38-51. doi: 10.1177/1550059420916634. Epub 2020 Jun 3.
4
A graph convolutional neural network for the automated detection of seizures in the neonatal EEG.
Comput Methods Programs Biomed. 2022 Jul;222:106950. doi: 10.1016/j.cmpb.2022.106950. Epub 2022 Jun 10.
5
Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
Phys Eng Sci Med. 2020 Dec;43(4):1229-1239. doi: 10.1007/s13246-020-00925-9. Epub 2020 Sep 14.
7
Automatic recognition of schizophrenia from brain-network features using graph convolutional neural network.
Asian J Psychiatr. 2023 Sep;87:103687. doi: 10.1016/j.ajp.2023.103687. Epub 2023 Jun 30.
8
Attention-Based Temporal Graph Representation Learning for EEG-Based Emotion Recognition.
IEEE J Biomed Health Inform. 2024 Oct;28(10):5755-5767. doi: 10.1109/JBHI.2024.3395622. Epub 2024 Oct 3.
10
MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
Comput Biol Med. 2022 Sep;148:105823. doi: 10.1016/j.compbiomed.2022.105823. Epub 2022 Jul 6.

引用本文的文献

1
An interpretable XAI deep EEG model for schizophrenia diagnosis using feature selection and attention mechanisms.
Front Oncol. 2025 Jul 22;15:1630291. doi: 10.3389/fonc.2025.1630291. eCollection 2025.
2
ViT-Based Face Diagnosis Images Analysis for Schizophrenia Detection.
Brain Sci. 2024 Dec 29;15(1):30. doi: 10.3390/brainsci15010030.

本文引用的文献

2
Deep reinforcement learning guided graph neural networks for brain network analysis.
Neural Netw. 2022 Oct;154:56-67. doi: 10.1016/j.neunet.2022.06.035. Epub 2022 Jul 3.
4
Automated detection of schizophrenia using optimal wavelet-based norm features extracted from single-channel EEG.
Cogn Neurodyn. 2021 Aug;15(4):661-674. doi: 10.1007/s11571-020-09655-w. Epub 2021 Jan 15.
5
Feature Extraction and Identification of Alzheimer's Disease based on Latent Factor of Multi-Channel EEG.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1557-1567. doi: 10.1109/TNSRE.2021.3101240. Epub 2021 Aug 10.
6
EEG-Based Seizure detection using linear graph convolution network with focal loss.
Comput Methods Programs Biomed. 2021 Sep;208:106277. doi: 10.1016/j.cmpb.2021.106277. Epub 2021 Jul 13.
7
Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings With Graph Convolution Network.
Front Hum Neurosci. 2021 May 25;15:651349. doi: 10.3389/fnhum.2021.651349. eCollection 2021.
9
A hybrid deep neural network for classification of schizophrenia using EEG Data.
Sci Rep. 2021 Feb 25;11(1):4706. doi: 10.1038/s41598-021-83350-6.
10
Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
Phys Eng Sci Med. 2020 Dec;43(4):1229-1239. doi: 10.1007/s13246-020-00925-9. Epub 2020 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验