Suppr超能文献

双向暹罗相关分析方法增强 SSVEP 的检测。

Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs.

机构信息

Research Center for Brain-Inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.

School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

J Neural Eng. 2022 Aug 1;19(4). doi: 10.1088/1741-2552/ac823e.

Abstract

Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have attracted increasing attention due to their high information transfer rate. To improve the performance of SSVEP detection, we propose a bidirectional Siamese correlation analysis (bi-SiamCA) model.. In this model, an long short-term memory-based Siamese architecture is designed to measure the similarity between the SSVEP signal and the template in each frequency and obtain the probability that the SSVEP signal belongs to each frequency. Additionally, a maximize agreement module with a designed contrastive loss is adopted in the Siamese architecture to increase the similarity between the SSVEP signal and the reference signal in the same frequency. Moreover, a two-way signal processing mechanism is built to effectively integrate complementary information from two temporal directions of the input signals. Our model uses raw SSVEPs as inputs and can be trained end-to-end.Experimental results on a 40-class dataset and a 12-class dataset indicate that bi-SiamCA can significantly improve the classification accuracy compared with the prominent traditional and deep learning methods, especially under short data lengths. Feature visualizations show that the similarity between the SSVEP signal and the reference signal in the same frequency gradually improved in our model.The proposed bi-SiamCA model enhances the performance of SSVEP detection and outperforms the compared methods.Due to its high decoding accuracy under short signals, our approach has great potential to implement a high-speed SSVEP-based BCI.

摘要

基于稳态视觉诱发电位(SSVEP)的脑-机接口(BCI)由于其高信息传输率而受到越来越多的关注。为了提高 SSVEP 检测的性能,我们提出了一种双向暹罗相关分析(bi-SiamCA)模型。在该模型中,设计了一个基于长短期记忆的暹罗结构,用于测量 SSVEP 信号与每个频率的模板之间的相似性,并获得 SSVEP 信号属于每个频率的概率。此外,暹罗结构中采用了具有设计对比损失的最大化一致性模块,以增加 SSVEP 信号与同频参考信号之间的相似性。此外,构建了一种双向信号处理机制,以有效地整合输入信号两个时间方向的互补信息。我们的模型使用原始 SSVEP 作为输入,可以进行端到端训练。在一个 40 类数据集和一个 12 类数据集上的实验结果表明,与突出的传统和深度学习方法相比,bi-SiamCA 可以显著提高分类准确性,尤其是在短数据长度下。特征可视化表明,我们的模型中同频 SSVEP 信号与参考信号之间的相似性逐渐提高。所提出的 bi-SiamCA 模型增强了 SSVEP 检测的性能,优于比较方法。由于其在短信号下具有较高的解码精度,我们的方法在实现高速 SSVEP 基 BCI 方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验