Frost Mungo, McBride Emma E, Smith Jesse S, Glenzer Siegfried H
High Energy Density Science Division, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, USA.
Sci Rep. 2022 Jul 19;12(1):12341. doi: 10.1038/s41598-022-16694-2.
The lithium-palladium and lithium-palladium-hydrogen systems are investigated at high pressures at and above room temperature. Two novel lithium-palladium compounds are found below [Formula: see text]. An ambient temperature phase is tentatively assigned as [Formula: see text], with [Formula: see text] Å at 8.64 GPa, isostructural with [Formula: see text]. The other phase occurs at high-temperature and is [Formula: see text], [Formula: see text] Å at 3.88 GPa and 200 [Formula: see text], similar to [Formula: see text], which is also known at high pressure. The presence of hydrogen in the system results in an [Formula: see text] structure with [Formula: see text] Å at 9.74 GPa. This persists up to [Formula: see text], the highest pressure studied. Below [Formula: see text] an fcc phase with a large unit cell, [Formula: see text] Å at 0.39 GPa, is also observed in the presence of hydrogen. On heating the hydrogen containing system at 4 GPa the [Formula: see text] phases persists to the melting point of lithium. In both systems melting the lithium results in the loss of crystalline diffraction from palladium containing phases. This is attributed to dissolution of the palladium in the molten lithium, and on cooling the palladium remains dispersed.
在室温和高于室温的高压下研究了锂 - 钯和锂 - 钯 - 氢体系。在[公式:见原文]以下发现了两种新型锂 - 钯化合物。一种室温相暂定为[公式:见原文],在8.64吉帕时晶格常数为[公式:见原文]埃,与[公式:见原文]同构。另一种相出现在高温下,是[公式:见原文],在3.88吉帕和200[公式:见原文]时晶格常数为[公式:见原文]埃,类似于[公式:见原文],后者在高压下也存在。体系中氢的存在导致在9.74吉帕时形成一种[公式:见原文]结构,晶格常数为[公式:见原文]埃。这种结构一直持续到所研究的最高压力[公式:见原文]。在[公式:见原文]以下,在有氢存在的情况下还观察到一种具有大晶胞的面心立方相,在0.39吉帕时晶格常数为[公式:见原文]埃。在4吉帕下加热含氢体系时,[公式:见原文]相一直持续到锂的熔点。在这两个体系中,锂熔化都会导致含钯相的晶体衍射消失。这归因于钯溶解在熔融锂中,冷却时钯仍保持分散状态。