Suppr超能文献

同步辐射红外光谱证据表明可能向金属氢转变。

Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen.

机构信息

CEA, DAM, DIF, Arpajon, France.

Synchrotron SOLEIL, Gif-sur-Yvette, France.

出版信息

Nature. 2020 Jan;577(7792):631-635. doi: 10.1038/s41586-019-1927-3. Epub 2020 Jan 29.

Abstract

Hydrogen has been an essential element in the development of atomic, molecular and condensed matter physics. It is predicted that hydrogen should have a metal state; however, understanding the properties of dense hydrogen has been more complex than originally thought, because under extreme conditions the electrons and protons are strongly coupled to each other and ultimately must both be treated as quantum particles. Therefore, how and when molecular solid hydrogen may transform into a metal is an open question. Although the quest for metal hydrogen has pushed major developments in modern experimental high-pressure physics, the various claims of its observation remain unconfirmed. Here a discontinuous change of the direct bandgap of hydrogen, from 0.6 electronvolts to below 0.1 electronvolts, is observed near 425 gigapascals. This result is most probably associated with the formation of the metallic state because the nucleus zero-point energy is larger than this lowest bandgap value. Pressures above 400 gigapascals are achieved with the recently developed toroidal diamond anvil cell, and the structural changes and electronic properties of dense solid hydrogen at 80 kelvin are probed using synchrotron infrared absorption spectroscopy. The continuous downward shifts of the vibron wavenumber and the direct bandgap with increased pressure point to the stability of phase-III hydrogen up to 425 gigapascals. The present data suggest that metallization of hydrogen proceeds within the molecular solid, in good agreement with previous calculations that capture many-body electronic correlations.

摘要

氢在原子、分子和凝聚态物理的发展中一直是一个重要的元素。据预测,氢应该具有金属态;然而,理解高密度氢的性质比最初想象的要复杂得多,因为在极端条件下,电子和质子强烈地相互耦合,最终必须将两者都视为量子粒子。因此,分子固体氢如何以及何时可能转变为金属仍然是一个悬而未决的问题。尽管对金属氢的探索推动了现代实验高压物理学的重大发展,但对其观测的各种说法仍未得到证实。在这里,在 425 吉帕斯卡附近观察到氢的直接带隙从 0.6 电子伏特连续变化到 0.1 电子伏特以下。这一结果很可能与金属态的形成有关,因为原子核零点能大于这个最低能带隙值。最近开发的环形金刚石压腔可实现 400 吉帕斯卡以上的压力,利用同步辐射红外吸收光谱技术探测 80 开尔文下高密度固体氢的结构变化和电子性质。随着压力的增加,声子波数和直接带隙的连续向下移动表明 III 相氢在 425 吉帕斯卡以下是稳定的。目前的数据表明,氢的金属化过程发生在分子固体中,这与先前捕捉到许多体电子相关的计算结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验