Pilatowsky-Cameo Saúl, Villaseñor David, Bastarrachea-Magnani Miguel A, Lerma-Hernández Sergio, Hirsch Jorge G
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, C.P. 04510 CDMX, Mexico.
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E. 2022 Jun;105(6-1):064209. doi: 10.1103/PhysRevE.105.064209.
By employing Husimi quasiprobability distributions, we show that a bounded portion of an unbounded phase space induces a finite effective dimension in an infinite-dimensional Hilbert space. We compare our general expressions with numerical results for the spin-boson Dicke model in the chaotic energy regime, restricting its unbounded four-dimensional phase space to a classically chaotic energy shell. This effective dimension can be employed to characterize quantum phenomena in infinite-dimensional systems, such as localization and scarring.
通过使用胡西米准概率分布,我们表明无界相空间的有界部分在无限维希尔伯特空间中诱导出有限的有效维度。我们将我们的一般表达式与混沌能量区域中自旋玻色子迪克模型的数值结果进行比较,将其无界的四维相空间限制在一个经典混沌能量壳上。这个有效维度可用于表征无限维系统中的量子现象,如局域化和疤痕。