Suppr超能文献

具有幂律超级传播事件的流行病过程的有限时间尺度

Finite-time scaling for epidemic processes with power-law superspreading events.

作者信息

Falcó Carles, Corral Álvaro

机构信息

Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, E-08193 Barcelona, Spain.

Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain.

出版信息

Phys Rev E. 2022 Jun;105(6-1):064122. doi: 10.1103/PhysRevE.105.064122.

Abstract

Epidemics unfold by means of a spreading process from each infected individual to a variable number of secondary cases. It has been claimed that the so-called superspreading events of the COVID-19 pandemic are governed by a power-law-tailed distribution of secondary cases, with no finite variance. Using a continuous-time branching process, we demonstrate that for such power-law-tailed superspreading, the survival probability of an outbreak as a function of both time and the basic reproductive number fulfills a "finite-time scaling" law (analogous to finite-size scaling) with universal-like characteristics only dependent on the power-law exponent. This clearly shows how the phase transition separating a subcritical and a supercritical phase emerges in the infinite-time limit (analogous to the thermodynamic limit). We also quantify the counterintuitive hazards posed by this superspreading. When the expected number of infected individuals is computed removing extinct outbreaks, we find a constant value in the subcritical phase and a superlinear power-law growth in the critical phase.

摘要

流行病通过从每个感染者传播到数量可变的二代病例的过程展开。有人声称,新冠疫情中所谓的超级传播事件受二代病例的幂律尾部分布支配,方差无界。我们使用连续时间分支过程证明,对于这种幂律尾的超级传播,疫情的存活概率作为时间和基本再生数的函数,满足一个“有限时间标度”定律(类似于有限尺寸标度),具有仅依赖于幂律指数的类普适特征。这清楚地表明了在无限时间极限(类似于热力学极限)下,区分亚临界和超临界阶段的相变是如何出现的。我们还对这种超级传播带来的反直觉风险进行了量化。当去除灭绝疫情来计算感染个体的预期数量时,我们发现在亚临界阶段有一个恒定值,而在临界阶段有超线性幂律增长。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验