Department of Statistics, The Ohio State University, Columbus, Ohio, USA.
Computer Science and Engineering, The Ohio State University, Columbus, Ohio, USA.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:524-533. eCollection 2022.
The identification of associations between drugs and adverse drug events (ADEs) is crucial for drug safety surveillance. An increasing number of studies have revealed that children and seniors are susceptible to ADEs at the population level. However, the comprehensive explorations of age risks in drug-ADE pairs are still limited. The FDA Adverse Event Reporting System (FAERS) provides individual case reports, which can be used for quantifying different age risks. In this study, we developed a statistical computational framework to detect age group of patients who are susceptible to some ADEs after taking specific drugs. We adopted different Chi-squared tests and conducted disproportionality analysis to detect drug-ADE pairs with age differences. We analyzed 4,580,113 drug-ADE pairs in FAERS (2004 to 2018Q3) and identified 2,523 pairs with the highest age risk. Furthermore, we conducted a case study on statin-induced ADE in children and youth. The code and results are available at https://github.com/Zhizhen- Zhao/Age-Risk-Identification.
药物与药物不良反应(ADE)之间关联的识别对于药物安全监测至关重要。越来越多的研究表明,儿童和老年人在人群水平上易发生 ADE。然而,药物-ADE 对之间的年龄风险的综合探索仍然有限。美国食品和药物管理局不良事件报告系统(FAERS)提供了个体病例报告,可用于量化不同的年龄风险。在这项研究中,我们开发了一个统计计算框架,以检测服用特定药物后易发生某些 ADE 的患者的年龄组。我们采用了不同的卡方检验,并进行了不均衡分析,以检测具有年龄差异的药物-ADE 对。我们分析了 FAERS(2004 年至 2018 年第三季度)中的 4580113 对药物-ADE,并确定了 2523 对具有最高年龄风险的药物-ADE 对。此外,我们还对儿童和青少年他汀类药物引起的 ADE 进行了案例研究。代码和结果可在 https://github.com/Zhizhen- Zhao/Age-Risk-Identification 上获得。