Suppr超能文献

一种用于识别药物不良反应对中年龄风险的计算框架。

A Computational Framework for Identifying Age Risks in Drug-Adverse Event Pairs.

机构信息

Department of Statistics, The Ohio State University, Columbus, Ohio, USA.

Computer Science and Engineering, The Ohio State University, Columbus, Ohio, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:524-533. eCollection 2022.

Abstract

The identification of associations between drugs and adverse drug events (ADEs) is crucial for drug safety surveillance. An increasing number of studies have revealed that children and seniors are susceptible to ADEs at the population level. However, the comprehensive explorations of age risks in drug-ADE pairs are still limited. The FDA Adverse Event Reporting System (FAERS) provides individual case reports, which can be used for quantifying different age risks. In this study, we developed a statistical computational framework to detect age group of patients who are susceptible to some ADEs after taking specific drugs. We adopted different Chi-squared tests and conducted disproportionality analysis to detect drug-ADE pairs with age differences. We analyzed 4,580,113 drug-ADE pairs in FAERS (2004 to 2018Q3) and identified 2,523 pairs with the highest age risk. Furthermore, we conducted a case study on statin-induced ADE in children and youth. The code and results are available at https://github.com/Zhizhen- Zhao/Age-Risk-Identification.

摘要

药物与药物不良反应(ADE)之间关联的识别对于药物安全监测至关重要。越来越多的研究表明,儿童和老年人在人群水平上易发生 ADE。然而,药物-ADE 对之间的年龄风险的综合探索仍然有限。美国食品和药物管理局不良事件报告系统(FAERS)提供了个体病例报告,可用于量化不同的年龄风险。在这项研究中,我们开发了一个统计计算框架,以检测服用特定药物后易发生某些 ADE 的患者的年龄组。我们采用了不同的卡方检验,并进行了不均衡分析,以检测具有年龄差异的药物-ADE 对。我们分析了 FAERS(2004 年至 2018 年第三季度)中的 4580113 对药物-ADE,并确定了 2523 对具有最高年龄风险的药物-ADE 对。此外,我们还对儿童和青少年他汀类药物引起的 ADE 进行了案例研究。代码和结果可在 https://github.com/Zhizhen- Zhao/Age-Risk-Identification 上获得。

相似文献

1
A Computational Framework for Identifying Age Risks in Drug-Adverse Event Pairs.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:524-533. eCollection 2022.
2
Serious Adverse Drug Events Reported to the FDA: Analysis of the FDA Adverse Event Reporting System 2006-2014 Database.
J Manag Care Spec Pharm. 2018 Jul;24(7):682-690. doi: 10.18553/jmcp.2018.24.7.682.
3
Adverse drug events in the prevention and treatment of COVID-19: A data mining study on the FDA adverse event reporting system.
Front Pharmacol. 2022 Nov 24;13:954359. doi: 10.3389/fphar.2022.954359. eCollection 2022.
4
Drug-induced interstitial lung disease: a real-world pharmacovigilance study of the FDA Adverse Event Reporting System from 2004 to 2021.
Ther Adv Drug Saf. 2024 Jan 27;15:20420986231224227. doi: 10.1177/20420986231224227. eCollection 2024.
5
Summary of adverse drug events for hydroxychloroquine, azithromycin, and chloroquine during the COVID-19 pandemic.
J Am Pharm Assoc (2003). 2021 May-Jun;61(3):293-298. doi: 10.1016/j.japh.2021.01.007. Epub 2021 Jan 11.
6
Adverse event profiles of drug-induced liver injury caused by antidepressant drugs: a disproportionality analysis.
Ther Adv Drug Saf. 2024 May 6;15:20420986241244585. doi: 10.1177/20420986241244585. eCollection 2024.
7
A pharmacovigilance study of pharmacokinetic drug interactions using a translational informatics discovery approach.
Br J Clin Pharmacol. 2022 Feb;88(4):1471-1481. doi: 10.1111/bcp.14762. Epub 2021 Feb 23.
8
Empirical estimation of under-reporting in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS).
Expert Opin Drug Saf. 2017 Jul;16(7):761-767. doi: 10.1080/14740338.2017.1323867. Epub 2017 May 9.
10
Development of an adverse drug event network to predict drug toxicity.
Curr Res Toxicol. 2020 Jun 11;1:48-55. doi: 10.1016/j.crtox.2020.06.001. eCollection 2020 Jun 10.

引用本文的文献

1
A theoretical model for detecting drug interaction with awareness of timing of exposure.
Sci Rep. 2025 Apr 21;15(1):13693. doi: 10.1038/s41598-025-98528-5.
2
Detection Algorithms for Simple Two-Group Comparisons Using Spontaneous Reporting Systems.
Drug Saf. 2024 Jun;47(6):535-543. doi: 10.1007/s40264-024-01404-w. Epub 2024 Feb 22.

本文引用的文献

1
Using Machine Learning to Identify Adverse Drug Effects Posing Increased Risk to Women.
Patterns (N Y). 2020 Oct 9;1(7). doi: 10.1016/j.patter.2020.100108. Epub 2020 Sep 22.
3
A comprehensive review and meta-analysis of risk factors for statin-induced myopathy.
Eur J Clin Pharmacol. 2018 Sep;74(9):1099-1109. doi: 10.1007/s00228-018-2482-9. Epub 2018 May 22.
4
Impact of SLCO1B1 Genotype on Pediatric Simvastatin Acid Pharmacokinetics.
J Clin Pharmacol. 2018 Jun;58(6):823-833. doi: 10.1002/jcph.1080. Epub 2018 Feb 22.
5
Patient subgroup identification for clinical drug development.
Stat Med. 2017 Apr 30;36(9):1414-1428. doi: 10.1002/sim.7236. Epub 2017 Feb 1.
6
Population Analysis of Adverse Events in Different Age Groups Using Big Clinical Trials Data.
JMIR Med Inform. 2016 Oct 17;4(4):e30. doi: 10.2196/medinform.6437.
7
9
Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases.
Drug Saf. 2016 Apr;39(4):355-64. doi: 10.1007/s40264-015-0388-3.
10
A regression tree approach to identifying subgroups with differential treatment effects.
Stat Med. 2015 May 20;34(11):1818-33. doi: 10.1002/sim.6454. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验