Suppr超能文献

可生成信息的价值:优化研究设计以实现针对罕见病原体未满足需求的治疗方法的研究。

The Value of the Information That Can Be Generated: Optimizing Study Design to Enable the Study of Treatments Addressing an Unmet Need for Rare Pathogens.

作者信息

Dane Aaron, Rex John H, Newell Paul, Stallard Nigel

机构信息

DaneStat Consulting, Cheshire, United Kingdom.

F2G Limited, Manchester, United Kingdom.

出版信息

Open Forum Infect Dis. 2022 May 27;9(7):ofac266. doi: 10.1093/ofid/ofac266. eCollection 2022 Jul.

Abstract

In traditional phase 3 trials confirming safety and efficacy of new treatments relative to a comparator, a 1-sided type I error rate of 2.5% is traditionally used and typically leads to minimum sizes of 300-600 subjects per study. However, for rare pathogens, it may be necessary to work with data from as few as 50-100 subjects. For areas with a high unmet need, there is a balance between traditional type I error and power and enabling feasible studies. In such cases, an alternative 1-sided alpha level of 5% or 10% should be considered, and we review herein the implications of such approaches. Resolving this question requires engagement of patients, the medical community, regulatory agencies, and trial sponsors.

摘要

在传统的3期试验中,相对于对照药确认新治疗方法的安全性和有效性时,传统上使用单侧I型错误率2.5%,这通常导致每项研究的受试者最小规模为300 - 600名。然而,对于罕见病原体,可能有必要使用少至50 - 100名受试者的数据。对于存在高度未满足需求的领域,在传统的I型错误和检验效能之间以及开展可行的研究之间需要取得平衡。在这种情况下,应考虑替代单侧α水平为5%或10%,我们在此回顾这些方法的影响。解决这个问题需要患者、医学界、监管机构和试验申办者的参与。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a7/9290570/6c5b698af6db/ofac266f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验