Cao Xinyun, Landick Robert, Campbell Elizabeth A
Department of Biochemistry, University of Wisconsin-Madison; Madison, United States.
Department of Bacteriology, University of Wisconsin-Madison; Madison, United States.
Microb Cell. 2022 Jul 4;9(7):136-138. doi: 10.15698/mic2022.07.780.
() infection (CDI) continues to be the leading threat of nosocomial deaths worldwide and a major burden on health-care systems. Broad-spectrum antibiotics eradicate the normal gut microbiome, killing protective commensal bacteria and increasing CDI recurrence. In contrast, Fidaxomicin (Fdx) is a narrow-spectrum antibiotic that inhibits growth without affecting crucial gut microbes. However, the basis of the narrow-spectrum activity of Fdx on its target, RNA polymerase (RNAP), in has been enigmatic. Recently, Cao (Nature, doi: 10.1038/s41586-022-04545-z) combined transgenic RNAP design and synthesis with cryo-electron microscopy (cryo-EM) to identify a key determinant of Fdx inhibition of RNAP. This finding was further corroborated by biochemical, bioinformatics, and genetic analysis. This microreview describes implications of this work for lineage-specific antibiotic design and new directions toward understanding transcription and regulation in and other bacterial pathogens.
艰难梭菌感染(CDI)仍然是全球医院感染死亡的主要威胁,也是卫生保健系统的一大负担。广谱抗生素会根除正常的肠道微生物群,杀死具有保护作用的共生细菌,并增加CDI的复发率。相比之下,非达霉素(Fdx)是一种窄谱抗生素,它能抑制生长而不影响关键的肠道微生物。然而,Fdx对其靶标RNA聚合酶(RNAP)在艰难梭菌中的窄谱活性基础一直是个谜。最近,曹等人(《自然》,doi:10.1038/s41586-022-04545-z)将转基因RNAP设计与合成与冷冻电子显微镜(cryo-EM)相结合,以确定Fdx抑制艰难梭菌RNAP的关键决定因素。这一发现通过生化、生物信息学和遗传分析得到了进一步证实。这篇微型综述描述了这项工作对特定谱系抗生素设计的意义,以及在理解艰难梭菌和其他细菌病原体中的转录和调控方面的新方向。