Suppr超能文献

半金属中的准对称保护拓扑结构。

Quasi-symmetry protected topology in a semi-metal.

作者信息

Guo Chunyu, Hu Lunhui, Putzke Carsten, Diaz Jonas, Huang Xiangwei, Manna Kaustuv, Fan Feng-Ren, Shekhar Chandra, Sun Yan, Felser Claudia, Liu Chaoxing, Bernevig B Andrei, Moll Philip J W

机构信息

Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Department of Physics, The Pennsylvania State University, University Park, PA, USA.

出版信息

Nat Phys. 2022 Jul;18(7):813-818. doi: 10.1038/s41567-022-01604-0. Epub 2022 May 16.

Abstract

The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

摘要

材料的晶体对称性决定了它可能拥有的拓扑能带结构类型,因此对称性是寻找拓扑材料的指导原则。在此,我们引入一种替代的指导原则,我们称之为“准对称性”。这是一种哈密顿量在低阶具有精确对称性,但被高阶微扰项破坏的情况。这会在动量空间的一些低对称点强制产生有限但参数上较小的能隙。不受对称性限制,准对称性消除了微调的必要性,因为它们强制在任意化学势下都会出现大贝里曲率的来源。我们证明,半金属CoSi中的准对称性在一个大的近简并平面上稳定了低于2meV的能隙,这可以在量子振荡谱中测量到。面内应变的施加打破了晶体对称性并使简并点产生能隙,这可通过新的磁击穿轨道观察到。然而,准对称性并不依赖于空间对称性,因此传输仍然完全相干。这些结果展示了一类对诸如应变诱导的晶体对称性破坏等微扰具有更高弹性的拓扑材料,这可能会带来稳健的拓扑应用以及超越常规空间群分类的意外拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d0/7613062/616fa0ac67d9/EMS144077-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验