Suppr超能文献

具有实空间不变量和重入射影对称性的霍夫施塔特拓扑。

Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries.

机构信息

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

出版信息

Phys Rev Lett. 2023 Jun 9;130(23):236601. doi: 10.1103/PhysRevLett.130.236601.

Abstract

Adding magnetic flux to a band structure breaks Bloch's theorem by realizing a projective representation of the translation group. The resulting Hofstadter spectrum encodes the nonperturbative response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator). In this Letter, we present a real space classification of these Hofstadter phases. We give topological indices in terms of symmetry-protected real space invariants, which reveal the bulk and boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity in tight-binding models causes the symmetries which are broken by the magnetic field to reenter at strong flux where they form projective point group representations. We completely classify the reentrant projective point groups and find that the Schur multipliers which define them are Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology.

摘要

向能带结构中添加磁通量会通过实现平移群的射影表示来破坏布洛赫定理。由此产生的霍夫施塔特能谱编码了能带对通量的非微扰响应。根据它们的拓扑结构,添加通量可以强制体带隙闭合(霍夫施塔特半金属)或边界态泵浦(霍夫施塔特拓扑绝缘体)。在这篇文章中,我们提出了这些霍夫施塔特相的实空间分类。我们给出了对称保护实空间不变量的拓扑指标,这些指标揭示了脆弱拓扑态对通量的体和边界响应。实际上,我们发现紧束缚模型中的磁通周期性导致被磁场打破的对称性在强磁通下重新出现,在那里它们形成射影点群表示。我们完全分类了重入射影点群,并发现定义它们的舒尔乘子是沿着晶体键计算的阿拉哈诺夫-玻姆相位。我们发现,仅使用零通量拓扑,非平凡的舒尔乘子足以预测和保护霍夫施塔特响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验