Yan Shan, Stackhouse Chavis A, Waluyo Iradwikanari, Hunt Adrian, Kisslinger Kim, Head Ashley R, Bock David C, Takeuchi Esther S, Takeuchi Kenneth J, Wang Lei, Marschilok Amy C
Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States.
Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States.
ACS Sustain Chem Eng. 2021 Oct 11;9(40):13545-13558. doi: 10.1021/acssuschemeng.1c04530. Epub 2021 Sep 28.
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS).
新冠疫情导致口罩等个人防护装备迫在眉睫的短缺。为应对短缺,口罩的新消毒或去污程序正在迅速研发和应用。干热和蒸汽消毒过程易于扩展规模,可处理大量样本,因此可能提供快速有效的去污途径,这在像新冠疫情这样的大流行期间,能够显著缓解全球对防护口罩迅速增长的需求。在本研究中,使用了一系列结构和化学表征技术,包括扫描电子显微镜(SEM)、接触角、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱,来探究热处理对市售3M 8210 N95颗粒物呼吸器和VWR高级防护手术口罩的影响。本研究的独特之处在于使用了位于布鲁克海文国家实验室国家同步辐射光源II的基于同步加速器的原位和操作软X射线光谱(IOS)光束线(23-ID-2)进行近边X射线吸收光谱(NEXAFS)分析。