Suppr超能文献

天冬氨酸 321 突变和谷氨酸 322 突变提高 4-羟基苯基丙酮酸双加氧酶 HPPDm 对托品酯的抗性。

Mutations of Asn321 and Glu322 Improve Resistance of 4-Hydroxyphenylpyruvate Dioxygenase HPPDm to Topramezone.

机构信息

Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.

Excellence and Innovation Center, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, People's Republic of China.

出版信息

J Agric Food Chem. 2022 Aug 10;70(31):9703-9710. doi: 10.1021/acs.jafc.2c02327. Epub 2022 Jul 20.

Abstract

As a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide, topramezone is an ideal target for herbicide-resistant genetic engineering. In this study, two mutants, K-19 (N321Y) and K-63 (Q166R/E322V), with topramezone resistance increased by 205.3 and 58.5%, respectively, were screened from the random mutation library of HPPDm, a topramezone-resistant HPPD mutant that we previously obtained. Sites N321 and E322 were identified as key sites for increased topramezone resistance by single-site mutation analysis. A mutant KB-145 (N321Y/E322K) was further obtained by saturation mutation at sites N321 and E322. The topramezone resistance of KB-145 increased by 955.3% compared to mutant HPPDm. In conclusion, this study identifies two new sites that significantly affect the topramezone resistance of HPPDm, which provides new insights into the molecular mechanism of herbicide resistance of HPPD, and the acquired mutants have great application potential in the construction of herbicide-resistant crops.

摘要

作为一种高效的 4-羟基苯基丙酮酸双加氧酶(HPPD)抑制剂除草剂,托吡酯是除草剂抗性遗传工程的理想目标。在本研究中,我们从先前获得的托吡酯抗性 HPPD 突变体 HPPDm 的随机突变文库中筛选到两个突变体 K-19(N321Y)和 K-63(Q166R/E322V),它们对托吡酯的抗性分别提高了 205.3%和 58.5%。通过单点突变分析,确定了 N321 和 E322 两个位点是增加托吡酯抗性的关键位点。进一步通过对 N321 和 E322 两个位点进行饱和突变,得到突变体 KB-145(N321Y/E322K)。与突变体 HPPDm 相比,KB-145 对托吡酯的抗性提高了 955.3%。总之,本研究确定了两个新的位点,它们显著影响 HPPDm 对托吡酯的抗性,这为 HPPD 除草剂抗性的分子机制提供了新的见解,并且获得的突变体在构建抗除草剂作物方面具有巨大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验