Zhang Liang, Li Na, Liu Dawei, Tao Guanhong, Xu Weidong, Li Mengmeng, Chu Ying, Cao Chensi, Lu Feiyue, Hao Chenjie, Zhang Ju, Cao Yu, Gao Feng, Wang Nana, Zhu Lin, Huang Wei, Wang Jianpu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
Chengdu Spaceon Group Co., Ltd., Chengdu, 610036, China.
Angew Chem Int Ed Engl. 2022 Sep 12;61(37):e202209337. doi: 10.1002/anie.202209337. Epub 2022 Aug 3.
Additive engineering with organic molecules is of critical importance for achieving high-performance perovskite optoelectronic devices. However, experimentally finding suitable additives is costly and time consuming, while conventional machine learning (ML) is difficult to predict accurately due to the limited experimental data available in this relatively new field. Here, we demonstrate a deep learning method that can predict the effectiveness of additives in perovskite light-emitting diodes (PeLEDs) with a high accuracy up to 96 % by using a small dataset of 132 molecules. This model can maximize the information of the molecules and significantly mitigate the duplicated problem that usually happened with previous models in ML for molecular screening. Very high efficiency PeLEDs with a peak external quantum efficiency up to 22.7 % can be achieved by using the predicated additive. Our work opens a new avenue for further boosting the performance of perovskite optoelectronic devices.
利用有机分子进行添加剂工程对于实现高性能钙钛矿光电器件至关重要。然而,通过实验寻找合适的添加剂成本高昂且耗时,而传统机器学习(ML)由于在这个相对较新的领域中可用的实验数据有限,难以准确预测。在此,我们展示了一种深度学习方法,该方法通过使用132个分子的小数据集,能够以高达96%的高精度预测添加剂在钙钛矿发光二极管(PeLEDs)中的有效性。该模型可以最大化分子信息,并显著减轻通常在用于分子筛选的ML先前模型中出现的重复问题。通过使用预测的添加剂,可以实现峰值外量子效率高达22.7%的非常高效的PeLEDs。我们的工作为进一步提高钙钛矿光电器件的性能开辟了一条新途径。