Suppr超能文献

通过在纤维素纳米纤维基质中排列碳纤维制备具有面内各向异性的热扩散膜。

Thermal Diffusion Films with In-Plane Anisotropy by Aligning Carbon Fibers in a Cellulose Nanofiber Matrix.

作者信息

Uetani Kojiro, Takahashi Kosuke, Watanabe Rikuya, Tsuneyasu Shota, Satoh Toshifumi

机构信息

SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki-shi, Osaka 567-0047, Japan.

Graduate School of Engineering, Osaka University, Mihogaoka 8-1, Ibaraki-shi, Osaka 567-0047, Japan.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 20;14(29):33903-11. doi: 10.1021/acsami.2c09332.

Abstract

For highly efficient heat dissipation of thin electronic devices, development of film materials that exhibit high thermal conductivity in the in-plane direction is desired. In particular, it is important to develop thermally conductive films with large in-plane anisotropy to prevent thermal interference between heat sources in close proximity and to cool in other directions by diffusion. In this study, we developed flexible composite films composed of a uniaxially aligned carbon-fiber filler within a cellulose nanofiber matrix through liquid-phase three-dimensional patterning. The film exhibited a high in-plane thermal conductivity anisotropy of 433%, with combined properties of a thermal conductivity of 7.8 W/mK in the aligned direction and a thermal conductivity of 1.8 W/mK in the in-plane orthogonal direction. This remarkable thermal conductivity and in-plane anisotropy showed the ability to significantly cool powder electroluminescent devices formed on the composite film and also to cool two heat sources in close proximity without thermal interference. In addition, the carbon-fiber filler could be extracted from the composite films by heat treatment at 450 °C and reused as a thermally conductive material.

摘要

为了实现薄型电子设备的高效散热,需要开发在面内方向具有高导热性的薄膜材料。特别是,开发具有大的面内各向异性的导热薄膜对于防止紧邻热源之间的热干扰以及通过扩散在其他方向散热至关重要。在本研究中,我们通过液相三维图案化在纤维素纳米纤维基质中制备了由单轴排列的碳纤维填料组成的柔性复合薄膜。该薄膜表现出433%的高面内热导率各向异性,在排列方向上的热导率为7.8W/mK,在面内正交方向上的热导率为1.8W/mK。这种显著的热导率和面内各向异性表明,该复合薄膜能够显著冷却形成在其上的粉末电致发光器件,并且能够冷却紧邻的两个热源而无热干扰。此外,碳纤维填料可通过在450℃下热处理从复合薄膜中提取出来,并作为导热材料重复使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f9/9335532/ea4b692c2103/am2c09332_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验