Jiang Shizhou, Lebedev Dmitry, Andrews Loren, Gish J Tyler, Song Thomas W, Hersam Mark C, Balogun Oluwaseyi
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
ACS Appl Mater Interfaces. 2023 Feb 8. doi: 10.1021/acsami.2c18755.
Two-dimensional (2D) semiconductors exhibit unique physical properties at the limit of a few atomic layers that are desirable for optoelectronic, spintronic, and electronic applications. Some of these materials require ambient encapsulation to preserve their properties from environmental degradation. While encapsulating 2D semiconductors is essential to device functionality, they also impact heat management due to the reduced thermal conductivity of the 2D material. There are limited experimental reports on in-plane thermal conductivity measurements in encapsulated 2D semiconductors. These measurements are particularly challenging in ultrathin films with a lower thermal conductivity than graphene since it may be difficult to separate the thermal effects of the sample from the encapsulating layers. To address this challenge, we integrated the frequency domain thermoreflectance (FDTR) and optothermal Raman spectroscopy (OTRS) techniques in the same experimental platform. First, we use the FDTR technique to characterize the cross-plane thermal conductivity and thermal boundary conductance. Next, we measure the in-plane thermal conductivity by model-based analysis of the OTRS measurements, using the cross-plane properties obtained from the FDTR measurements as input parameters. We provide experimental data for the first time on the thickness-dependent in-plane thermal conductivity of ultrathin MoS nanofilms encapsulated by alumina (AlO) and silica (SiO) thin films. The measured thermal conductivity increased from 26.0 ± 10.0 W m K for monolayer MoS to 39.8 ± 10.8 W m K for the six-layer films. We also show that the thickness-dependent cross-plane thermal boundary conductance of the AlO/MoS/SiO interface is limited by the low thermal conductance (18.5 MW m K) of the MoS/SiO interface, which has important implications on heat management in SiO-supported and encased MoS devices. The measurement methods can be generalized to other 2D materials to study their anisotropic thermal properties.
二维(2D)半导体在几个原子层的极限下展现出独特的物理性质,这些性质在光电子、自旋电子和电子应用中很受欢迎。其中一些材料需要环境封装以保护其性能不受环境降解影响。虽然封装二维半导体对器件功能至关重要,但由于二维材料的热导率降低,它们也会影响热管理。关于封装二维半导体平面内热导率测量的实验报告有限。在热导率低于石墨烯的超薄膜中进行这些测量尤其具有挑战性,因为可能难以将样品的热效应与封装层的热效应区分开来。为应对这一挑战,我们在同一实验平台上集成了频域热反射(FDTR)和光热拉曼光谱(OTRS)技术。首先,我们使用FDTR技术来表征平面内热导率和热边界电导。接下来,我们通过对OTRS测量进行基于模型的分析来测量平面内热导率,将从FDTR测量中获得的平面外特性作为输入参数。我们首次提供了关于由氧化铝(AlO)和二氧化硅(SiO)薄膜封装的超薄MoS纳米薄膜平面内热导率随厚度变化的实验数据。测得的热导率从单层MoS的26.0±10.0 W m⁻¹ K增加到六层薄膜的39.8±10.8 W m⁻¹ K。我们还表明,AlO/MoS/SiO界面的厚度依赖性平面外热边界电导受MoS/SiO界面低热导(18.5 MW m⁻² K)的限制,这对SiO支撑和封装的MoS器件的热管理具有重要意义。这些测量方法可以推广到其他二维材料,以研究它们的各向异性热性质。