Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Sci Robot. 2022 Jul 13;7(68):eabm4183. doi: 10.1126/scirobotics.abm4183.
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users' intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment-collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users' values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.
社会协调的一个前提是队友之间的双向沟通,每个人同时扮演两个角色:作为接收方的倾听者和表达方的发言者。对于在具有多个目标的复杂情况下与人类一起工作的机器人来说,如果不能满足这两个角色中的任何一个角色的期望,由于人类和机器人之间的价值观不一致,就可能会破坏团队的表现。具体来说,机器人需要作为一个有效的倾听者,从指令和反馈中推断出人类用户的意图,作为一个表达者,向用户解释其决策过程。在这里,我们研究了如何在价值对齐的背景下促进有效的人机双向通信——协作机器人和用户形成了对可能任务目标重要性的一致理解。我们提出了一个可解释的人工智能(XAI)系统,其中一组机器人通过考虑实时反馈来预测用户的价值,同时通过解释向用户传达其决策过程。为了从人类反馈中学习,我们的 XAI 系统集成了一种协作通信模型,用于推断与多个理想目标相关的人类价值。为了对人类具有可解释性,该系统使用图形模型模拟人类心理动态并预测最佳解释。我们进行了心理实验来检验所提出的计算框架的核心组件。我们的结果表明,基于双向通信的学习模型可以实现复杂协作任务中的实时人机相互理解。我们相信,这种交互框架可以为交际 XAI 系统中的双向价值对齐提供启示,更广泛地说,为未来的人机协作系统提供启示。