Suppr超能文献

观点归属提高了与类人机器人交流主观观点的积极性。

Opinion attribution improves motivation to exchange subjective opinions with humanoid robots.

作者信息

Uchida Takahisa, Minato Takashi, Ishiguro Hiroshi

机构信息

Graduate School of Engineering Science, Osaka University, Osaka, Japan.

Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan.

出版信息

Front Robot AI. 2024 Feb 19;11:1175879. doi: 10.3389/frobt.2024.1175879. eCollection 2024.

Abstract

In recent years, the development of robots that can engage in non-task-oriented dialogue with people, such as chat, has received increasing attention. This study aims to clarify the factors that improve the user's willingness to talk with robots in non-task oriented dialogues (e.g., chat). A previous study reported that exchanging subjective opinions makes such dialogue enjoyable and enthusiastic. In some cases, however, the robot's subjective opinions are not realistic, i.e., the user believes the robot does not have opinions, thus we cannot attribute the opinion to the robot. For example, if a robot says that alcohol tastes good, it may be difficult to imagine the robot having such an opinion. In this case, the user's motivation to exchange opinions may decrease. In this study, we hypothesize that regardless of the type of robot, opinion attribution affects the user's motivation to exchange opinions with humanoid robots. We examined the effect by preparing various opinions of two kinds of humanoid robots. The experimental result suggests that not only the users' interest in the topic but also the attribution of the subjective opinions to them influence their motivation to exchange opinions. Another analysis revealed that the android significantly increased the motivation when they are interested in the topic and do not attribute opinions, while the small robot significantly increased it when not interested and attributed opinions. In situations where there are opinions that cannot be attributed to humanoid robots, the result that androids are more motivating when users have the interests even if opinions are not attributed can indicate the usefulness of androids.

摘要

近年来,能够与人类进行非任务导向对话(如聊天)的机器人的发展受到了越来越多的关注。本研究旨在阐明在非任务导向对话(如聊天)中提高用户与机器人交谈意愿的因素。此前的一项研究报告称,交流主观意见会使这种对话变得愉快且热烈。然而,在某些情况下,机器人的主观意见并不现实,即用户认为机器人没有观点,因此我们不能将该观点归因于机器人。例如,如果一个机器人说酒的味道很好,可能很难想象机器人会有这样的观点。在这种情况下,用户交流意见的动机可能会降低。在本研究中,我们假设无论机器人的类型如何,观点归因都会影响用户与类人机器人交流意见的动机。我们通过准备两种类人机器人的各种观点来检验这种影响。实验结果表明,不仅用户对话题的兴趣,而且主观意见对他们的归因都会影响他们交流意见的动机。另一项分析表明,当安卓机器人对话题感兴趣且不进行观点归因时,其动机显著增加,而当小型机器人不感兴趣且进行观点归因时,其动机显著增加。在存在无法归因于类人机器人的观点的情况下,即使不进行观点归因,当用户感兴趣时安卓机器人更具激励性这一结果可以表明安卓机器人的有用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验