Suppr超能文献

一种用于动作识别的具有同步时空和空间自注意力的高效视频变换器。

An Effective Video Transformer With Synchronized Spatiotemporal and Spatial Self-Attention for Action Recognition.

作者信息

Alfasly Saghir, Chui Charles K, Jiang Qingtang, Lu Jian, Xu Chen

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2496-2509. doi: 10.1109/TNNLS.2022.3190367. Epub 2024 Feb 5.

Abstract

Convolutional neural networks (CNNs) have come to dominate vision-based deep neural network structures in both image and video models over the past decade. However, convolution-free vision Transformers (ViTs) have recently outperformed CNN-based models in image recognition. Despite this progress, building and designing video Transformers have not yet obtained the same attention in research as image-based Transformers. While there have been attempts to build video Transformers by adapting image-based Transformers for video understanding, these Transformers still lack efficiency due to the large gap between CNN-based models and Transformers regarding the number of parameters and the training settings. In this work, we propose three techniques to improve video understanding with video Transformers. First, to derive better spatiotemporal feature representation, we propose a new spatiotemporal attention scheme, termed synchronized spatiotemporal and spatial attention (SSTSA), which derives the spatiotemporal features with temporal and spatial multiheaded self-attention (MSA) modules. It also preserves the best spatial attention by another spatial self-attention module in parallel, thereby resulting in an effective Transformer encoder. Second, a motion spotlighting module is proposed to embed the short-term motion of the consecutive input frames to the regular RGB input, which is then processed with a single-stream video Transformer. Third, a simple intraclass frame interlacing method of the input clips is proposed that serves as an effective video augmentation method. Finally, our proposed techniques have been evaluated and validated with a set of extensive experiments in this study. Our video Transformer outperforms its previous counterparts on two well-known datasets, Kinetics400 and Something-Something-v2.

摘要

在过去十年中,卷积神经网络(CNN)在图像和视频模型中主导了基于视觉的深度神经网络结构。然而,无卷积的视觉Transformer(ViT)最近在图像识别方面超越了基于CNN的模型。尽管取得了这一进展,但构建和设计视频Transformer在研究中尚未获得与基于图像的Transformer相同的关注。虽然有人尝试通过将基于图像的Transformer改编用于视频理解来构建视频Transformer,但由于基于CNN的模型和Transformer在参数数量和训练设置方面存在巨大差距,这些Transformer仍然缺乏效率。在这项工作中,我们提出了三种技术来改进视频Transformer的视频理解能力。首先,为了获得更好的时空特征表示,我们提出了一种新的时空注意力方案,称为同步时空和空间注意力(SSTSA),它通过时间和空间多头自注意力(MSA)模块来推导时空特征。它还通过另一个并行的空间自注意力模块保留最佳的空间注意力,从而得到一个有效的Transformer编码器。其次,提出了一个运动聚焦模块,将连续输入帧的短期运动嵌入到常规的RGB输入中,然后用单流视频Transformer进行处理。第三,提出了一种简单的输入剪辑类内帧交织方法,作为一种有效的视频增强方法。最后,在本研究中,我们通过一系列广泛的实验对所提出的技术进行了评估和验证。我们的视频Transformer在两个著名的数据集Kinetics400和Something-Something-v2上优于之前的同类产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验