Suppr超能文献

边缘智能:用于智能医疗系统的基于联邦学习的隐私保护框架

Edge Intelligence: Federated Learning-Based Privacy Protection Framework for Smart Healthcare Systems.

作者信息

Akter Mahmuda, Moustafa Nour, Lynar Timothy, Razzak Imran

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):5805-5816. doi: 10.1109/JBHI.2022.3192648. Epub 2022 Dec 7.

Abstract

Federated learning methods offer secured monitor services and privacy-preserving paradigms to end-users and organisations in the Internet of Things networks such as smart healthcare systems. Federated learning has been coined to safeguard sensitive data, and its global aggregation is often based on a centralised server. This design is vulnerable to malicious attacks and could be breached by privacy attacks such as inference and free-riding, leading to inefficient training models. Besides, uploaded analysing parameters by patients can reveal private information and the threat of direct manipulation by the central server. To address these issues, we present a three-fold Federated Edge Aggregator, the so-called Edge Intelligence, a federated learning-based privacy protection framework for safeguarding Smart Healthcare Systems at the edge against such privacy attacks. We employ an iteration-based Conventional Neural Network (CNN) model and artificial noise functions to balance privacy protection and model performance. A theoretical convergence bound of Edge Intelligence on the trained federated learning model's loss function is also introduced here. We evaluate and compare the proposed framework with the recently established methods using model performance and privacy budget on popular and recent datasets: MNIST, CIFAR10, STL10, and COVID19 chest x-ray. Finally, the proposed framework achieves 90% accuracy and a high privacy rate demonstrating better performance than the baseline technique.

摘要

联邦学习方法为物联网网络(如智能医疗系统)中的终端用户和组织提供了安全的监控服务和隐私保护范式。联邦学习的提出是为了保护敏感数据,其全局聚合通常基于中央服务器。这种设计容易受到恶意攻击,可能会被推理和搭便车等隐私攻击攻破,从而导致训练模型效率低下。此外,患者上传的分析参数可能会泄露私人信息,以及受到中央服务器直接操纵的威胁。为了解决这些问题,我们提出了一种三重联邦边缘聚合器,即所谓的边缘智能,这是一种基于联邦学习的隐私保护框架,用于保护边缘的智能医疗系统免受此类隐私攻击。我们采用基于迭代的传统神经网络(CNN)模型和人工噪声函数来平衡隐私保护和模型性能。这里还介绍了边缘智能在训练后的联邦学习模型损失函数上的理论收敛界。我们使用模型性能和隐私预算,在流行的最新数据集(MNIST、CIFAR10、STL10和COVID19胸部X光)上,对所提出的框架与最近建立的方法进行了评估和比较。最后,所提出的框架实现了90%的准确率和高隐私率,表现优于基线技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验